天津大学学报(自然科学与工程技术版) /zrb/oa 封一 /zrb/oa/darticle.aspx?type=view&id=202005000 2020年05月06 00:00 2020年05 0 702969 目录 /zrb/oa/darticle.aspx?type=view&id=202005001 2020年05月06 00:00 2020年05 0 123788 <span>基于枝角金纳米颗粒的LSPR传感器制备与免疫检测</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005002 <span> <p style="line-height: 15pt; layout-grid-mode: char;"><a name="OLE_LINK25" /><a name="OLE_LINK24"><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">枝角状纳米金结构具备尖锐的边缘和耦合区域的</span></span></a><span><span style="font-family: 方正楷体简体; font-size: 9pt;">“</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">热点</span></span><span><span style="font-family: 方正楷体简体; font-size: 9pt;">”</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">,可极大增强粒子的周围电场,使纳米粒子具备很强的局域表面等离子共振</span></span><span><span style="color: windowtext; font-family: 宋体; font-size: 9pt;">(</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">LSPR</span></span><span><span style="color: windowtext; font-family: 宋体; font-size: 9pt;">)</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">性能.本文在光纤表面原位制备具有枝角结构的金纳米材料,构建光纤</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">LSPR</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">传感器,并将其应用于免疫检测中.首先在预处理的光纤表面修饰一层聚多巴胺黏附层,再连接金纳米晶种,进一步利用原位还原与银诱导法,合成具有枝角状结构的金纳米颗粒.实验过程中,优化了多巴胺聚合温度、时间和金膜生长时间,最佳反应条件为:多巴胺聚合温度</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1<span style="letter-spacing: 2pt;">0</span></span><span><span style="color: windowtext; font-family: 宋体; font-size: 9pt;">℃</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">,聚合时间</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1<span style="letter-spacing: 2pt;">5</span>min</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">,金纳米晶种镀膜时间</span></span><span><span style="color: windowtext; letter-spacing: 2pt; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">5</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">min</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">.最优条件下制备的枝角状金膜光纤</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">LSPR</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">传感器在</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1.333</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">~</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1.381</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">的折射率区间,灵敏度高达</span></span><span><span style="color: windowtext; letter-spacing: 2pt; font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">4</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">09<span style="letter-spacing: 2pt;">1</span>nm/RIU</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">.进一步考察了传感器的稳定性,发现经过溶剂冲洗、透明胶带撕拉与食人鱼溶液浸泡等处理后,传感器仍能保持光谱信号的稳定.此外,镀膜液采用质量分数为</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">0.01</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">%</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">的氯金酸,仅为传统方法用量的</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1/10</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">,因此在制备成本方面更具经济性.将人免疫球蛋白</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">G</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">固定在</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">LSPR</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">传感器上,可实现兔抗人免疫球蛋白</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">G</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">在</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">0</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">~</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">7<span style="letter-spacing: 2pt;">5</span>μ</span></span><span><span style="color: windowtext; font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">g/</span></span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">mL</span></span><span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">浓度区间的定量检测,其灵敏度为</span></span><a name="OLE_LINK93" /><a name="OLE_LINK92"><span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">0.08<span style="letter-spacing: 2pt;">6</span></span></span></span></a><span><span><span style="color: windowtext; font-family: 宋体; font-size: 9pt;">(</span></span></span><span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">nm</span></span></span><a name="OLE_LINK87"><span><span><span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">/</span></span></span></a><span><span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">μ</span></span></span><span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">g</span></span></span><span><span><span style="font-family: 宋体; font-size: 9pt;">)</span></span></span><span><span><span style="font-family: 方正书宋简体; font-size: 9pt;">·</span></span></span><span><span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">mL</span></span></span> <span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">.</span></span> </span></span></p> </span> <br /> 2020年05月06 00:00 2020年05 441 449 1416344 <span>苏荣欣<sup>1, 2, 3</sup>,唐艺文<sup>1, 2</sup>,尹慧廷<sup>1, 2</sup>,黄仁亮<sup>1, 2</sup>,齐 崴<sup>1, 2, 3</sup>,何志敏</span> <sup>1, 2</sup> <br /> <span>正负电荷改性乙肝病毒样颗粒的构建及性能评价</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005003 <span> <span style="font-family: 方正楷体简体; font-size: 9pt;">乙肝病毒核心蛋白</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">hepatitis B virus core protein</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">HBc</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">可在体外自组装成二十面体的病毒样颗粒</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">virus</span> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">like particles</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">VLPs</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,但是其较低的自组装效率及稳定性制约其应用.通过蛋白质改造修饰,在野生型</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">HBc</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">wtHBc</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">的免疫显性区</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">major immunodominant region</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">MIR</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">分别插入带电多肽序列</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">RRRRRRRR</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">和</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">DDDDDDDD</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,以通过荷电基团及静电相互作用的引入提高</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">VLPs</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">稳定性.经大肠杆菌重组表达,成功获得携带额外电荷的</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">HBc</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">突变体</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">mHBc</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,包括携带额外正电荷的</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">m</span> <span style="font-family: 方正书宋简体; font-size: 9pt;">+</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">HBc</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">和负电荷的</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">m</span> <span style="font-family: 方正书宋简体; font-size: 9pt;">-</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">HBc</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">.结果表明,</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">mHBc</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">的二级结构富含</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">α</span> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">螺旋,与</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">wtHBc</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">一致.</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">m</span> <span style="font-family: 方正书宋简体; font-size: 9pt;">+</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">HBc</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">和</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">m</span> <span style="font-family: 方正书宋简体; font-size: 9pt;">-</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">HBc</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">等比例混合可在体外实现自组装,所得</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">mHBc VLPs</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">粒径为</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">30.44</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">±</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">2.23</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">nm</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,与野生型一致.该自组装过程及组装体稳定性受离子强度和</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">pH</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">值影响.使用尺寸排阻色谱、原子力显微镜、动态光散射等方法表征和分析</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">VLPs</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">在不同缓冲液中的稳定性差异.发现</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">wtHBc VLPs</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">可稳定存在于</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">0.3</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">~</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">0.<span style="letter-spacing: 2pt;">7</span>mol/L NaCl</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">溶液中,盐浓度过高或过低均会使其稳定性降低.</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">pH</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">响应性实验表明,</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">wtHBc VLPs</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">的最佳组装及稳定</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">pH</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">值为</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">7.4</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,偏离此</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">pH</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">值使其稳定性降低.在低于</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">pH</span> <span style="font-family: 方正书宋简体; font-size: 9pt;">=</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">5.5</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">的环境下,其相对稳定性明显降低,只达到</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">pH</span> <span style="font-family: 方正书宋简体; font-size: 9pt;">=</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">7.4</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">的</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">64.2</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">%</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">.而</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">mHBc VLPs</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">的稳定性差异随</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">pH</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">值变化不大,在</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">pH</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">测试范围</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">5.5</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">~</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">9.5</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">的相对稳定性均高于</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">88.3</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">%</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">.以上研究结果表明,正、负电荷基团的引入可提高</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">HBc VLPs</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">对</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">pH</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">值变化的耐受性,拓宽稳定</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">pH</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">值区间,增强</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">VLPs</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">的稳定性,利于其实际应用.</span> </span> <br /> 2020年05月06 00:00 2020年05 450 458 1504715 <span>张 麟,陈 衡</span> <br /> <span>壳寡糖胍对胰岛素抵抗及相关蛋白的作用</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005004 <span> <span style="font-family: 方正楷体简体; font-size: 9pt;">针对壳寡糖胍</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">COSG</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">对动物体内胰岛素抵抗治疗效果及相关机制尚不明确的问题,建立高脂高糖饮食联合链脲佐菌素诱导的</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">2</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">型糖尿病</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">T2DM</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">大鼠模型,并进行</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">COSG</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">灌胃给药治疗</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">8</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">周,研究</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">COSG</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">对</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">T2DM</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">大鼠体内胰岛素抵抗及相关信号通路的影响.结果显示,</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">COSG</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">可明显降低</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">T2DM</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">大鼠血清中总胆固醇</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">TC</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">、甘油三酯</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">TG</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">和低密度脂蛋白</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">LDL</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">水平并提高血清中高密度脂蛋白</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">HDL</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">水平;此外,</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">COSG</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">可下调</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">T2DM</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">大鼠的空腹血糖</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">FBG</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">和空腹胰岛素</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">FINS</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">含量,并减小</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">T2DM</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">大鼠胰岛素抵抗指数</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">HOMA</span> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">IR</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">.进一步研究相关蛋白发现,</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">COSG</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">可抑制骨骼肌中</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">p38 </span> <span style="font-family: 方正楷体简体; font-size: 9pt;">丝裂原活化蛋白激酶</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">p3</span> <span style="letter-spacing: 2pt; font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">8</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">MAPK</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">的磷酸化以及提高胰岛素受体底物</span> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">IRS</span> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">酪氨酸位点的磷酸化,并提高蛋白激酶</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">B</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">AKT</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">的磷酸化水平和促进葡萄糖转运蛋白</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">4</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">GLUT4</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">转移至细胞膜,从而促进细胞对葡萄糖的摄取;另外,</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">COSG</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">还可以降低磷酸烯醇式丙酮酸羧激酶</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">PEPCK</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">和肌糖原水平,进而抑制糖异生</span> <span style="font-family: 方正书宋简体; font-size: 9pt;">.</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">从而,</span><span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">COSG</span><span style="font-family: 方正楷体简体; font-size: 9pt;">达到改善胰岛素抵抗的作用.总之,</span><span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">COSG</span><span style="font-family: 方正楷体简体; font-size: 9pt;">可改善</span><span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">T2DM</span><span style="font-family: 方正楷体简体; font-size: 9pt;">大鼠胰岛素抵抗,具有良好的应用前景</span><span style="font-family: 方正书宋简体; font-size: 9pt;">.</span></span> <br /> 2020年05月06 00:00 2020年05 459 466 933448 <span>王园园<sup>1</sup>,刘晓非<sup>1</sup>,邹雅露<sup>1</sup>,张 海<sup>1</sup>,郑淇方<sup>1</sup>,赵励彦<sup>1</sup>,吴蕴棠</span> <sup>2</sup> <br /> <span>掺杂石墨烯制备方法新进展</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005005 <span> <span style="font-family: 方正楷体简体; font-size: 9pt;">石墨烯是一种新兴的二维碳纳米材料,在平面内碳原子以</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">sp<sup>2</sup></span> <span style="font-family: 方正楷体简体; font-size: 9pt;">电子轨道杂化形成蜂巢状晶格结构,厚度只有</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">0.3<span style="letter-spacing: 2pt;">4</span>nm</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,具备优异的光电性能.然而石墨烯价带和导带之间的带隙为零,这限制了其在纳米电子学中的应用.通过杂原子</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">如氮、硼、氟等</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">对石墨烯进行掺杂的方式,可以打开带隙使其成为</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">n</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">型或</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">p</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">型材料,调节其电子结构和其他内在性质,有效地改善或扩大其在各种领域中的应用.掺杂对石墨烯性能的影响主要取决于杂原子键合类型以及掺杂量.比如掺杂氮原子的石墨烯片将在晶格中产生吡啶氮、石墨氮以及吡咯氮这</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">3</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">种常见的键合结构,而不同氮的存在形式会对掺杂石墨烯的催化及电学特性产生影响.本文综述了近年来掺杂石墨烯的制备、性质和应用,比较了现有制备方法的优缺点,介绍了其在能量存储转换、光电器件以及传感器等方面的应用实例,分析总结了现有掺杂石墨烯材料的不足并展望了其未来的发展方向.</span> </span> <br /> 2020年05月06 00:00 2020年05 467 474 1530937 <span>韩军凯<sup>1, 2</sup>,冯奕钰<sup>1</sup>,封 伟</span> <sup>1</sup> <br /> <span>多元糖醇混合物的蓄放热性能</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005006 <span> </span> <p style="line-height: 15pt; layout-grid-mode: char;"> <span> <span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">糖醇由于具有高热能存储密度、价格低廉、无毒、无腐蚀性等优点在热能存储领域中有较好的应用前景</span> <span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">.</span> <span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">为拓宽糖醇材料相变温度范围,同时获得较高的相变潜热,提高重结晶性,使其更加适用于中低温相变储能,对一元糖醇赤藓糖醇、木糖醇、山梨糖醇、甘露醇和多元共晶糖醇及混合糖醇的蓄放热性能进行实验研究</span> <span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">. </span> <span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">实验结果表明:赤藓糖醇和甘露醇在中低温相变储能中的实际工程应用性较强;多元共晶糖醇体系熔点较一元糖醇降低,部分多元共晶糖醇体系的熔化潜热较一元糖醇升高,赤藓糖醇</span> <span style="color: windowtext; font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">甘露醇二元共晶体系较一元甘露醇熔点降低</span> <span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">30.9</span> <span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">%</span> <span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">,熔化潜热提高</span> <span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">12</span> <span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">%</span> <span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">,但是所有多元共晶体系重结晶性均变差,在降温过程中均未出现凝固结晶现象;甘露醇对于赤藓糖醇</span> <span style="color: windowtext; font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">甘露醇二元共晶体系具有一定的成核剂作用,可以提高其重结晶性</span> <span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">. </span> <span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">研制了一种新型混合糖醇相变储能材料,即甘露醇与赤藓糖醇的摩尔比为</span> <span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1.1</span> <span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">的混合物,其熔化温度范围</span> <span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">112.47</span> <span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">~</span> <span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">156.8<span style="letter-spacing: 2pt;">8</span><span style="font-family: 宋体;">℃</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">,熔化潜热</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">271.7<span style="letter-spacing: 2pt;">1</span>J/g</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">,凝固温度范围</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">77.05</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">~</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">47.4<span style="letter-spacing: 2pt;">8</span><span style="font-family: 宋体;">℃</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">,凝固潜热</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">158.<span style="letter-spacing: 2pt;">6</span>J/g</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">,且</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">DSC</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">凝固曲线双峰部分重叠,经过</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">50</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">次升降温过程,其熔化潜热仅损失</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">2.8</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">%</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">,凝固潜热仅损失</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">3.6</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">%</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">,重结晶性较好;在</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">25</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">~</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">10<span style="letter-spacing: 2pt;">0</span><span style="color: windowtext; font-family: 宋体; font-size: 9pt;">℃</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">的温度区间内,随着温度的升高,混合物材料的准稳态比热容在</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">0.990</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">~</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1.01<span style="letter-spacing: 2pt;">0</span>J/</span><span style="color: windowtext; font-family: 宋体; font-size: 9pt;">(</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">g</span><span style="font-family: 方正楷体简体; font-size: 9pt;">·</span><span style="color: windowtext; font-family: 宋体; font-size: 9pt;">℃)</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">之间总体上呈现出先减后增的趋势,作为相变储能材料在实际工程中的应用性较强</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">.</span>&nbsp;</span></span></span> </span> <br /> </p> 2020年05月06 00:00 2020年05 475 482 799576 <span>王飞波<sup>1, 2</sup>,孟祥瑞<sup>1, 2</sup>,李敏霞<sup>1, 2</sup>,马一太</span> <sup>1, 2</sup> <br /> <span>双变量协同的无人直升机发动机恒转速滑模控制</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005007 <span> <span style="font-family: 方正楷体简体; font-size: 9pt;">针对无人直升机发动机恒转速控制问题,提出了一种油门</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">/</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">点火提前角双变量协同调节的恒转速滑模控制策略.发动机输出扭矩控制是恒转速控制问题关键的一环,而油门开度和点火提前角作为调节发动机输出扭矩的两个变量具有不同的特点.油门调节虽然调节范围宽,但是响应较慢,易受时滞效应的影响而产生超调现象;点火提前角响应较快,但是调节范围有限.将二者的优点结合起来实现协同控制,可以进一步加强恒转速控制效果.为实现此目的,对发动机进行了数学建模,并基于该模型和滑模控制设计了协同控制策略.该策略包括点火提前角优先调节的主逻辑和点火提前角回归逻辑.最终通过仿真和试验验证了控制策略的效果.仿真结果显示:负载突变时,双变量协同滑模控制器相较于传统</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">PID</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">控制器,转速误差减小</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">61</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">%</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">;同样基于滑模控制,双变量协同控制相较于双变量分离控制,转速误差减小</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">21.4</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">%</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">;存在负载扭矩干扰或进气压力波动时,双变量协同滑模控制的转速稳定性也优于其他两种控制方式;整机系留试验中,双变量协同滑模控制的转速波动范围比双变量分离滑模控制小</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">24</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">%</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,比传统</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">PID</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">控制小</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">62</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">%</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">.经过多次系留试验观测,使用双变量协同滑模控制,可使转速波动范围在±</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">7<span style="letter-spacing: 2pt;">0</span>r/min</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">以内,控制误差在</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">2</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">%</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">以内,能够满足无人直升机飞行稳定性的要求.</span> </span> <br /> 2020年05月06 00:00 2020年05 483 491 2093021 <span>胡春明<sup>1, 2</sup>,魏石峰<sup>2</sup>,刘 娜<sup>1</sup>,宋玺娟<sup>1</sup>,米 雪</span> <sup>2</sup> <br /> <span>撞击位置与风扇转速对鸟撞过程的影响</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005008 <span> <span style="font-family: 方正楷体简体; font-size: 9pt;">鸟撞航空发动机风扇叶片严重威胁航空发动机的运行安全.对绿头鸭进行</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">CT</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">扫描,通过光滑粒子流体动力学</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">SPH</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">法建立绿头鸭真实鸟模型.将真实鸟模型及传统鸟体简化模型撞击平板仿真结果与</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">Wilbeck</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">真实鸟撞击平板试验结果对比,验证了真实鸟模型的准确性.对比分析了鸟撞静止风扇叶片与鸟撞旋转风扇叶片条件下鸟体及风扇叶片的瞬态冲击响应;选取</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">83<span style="letter-spacing: 2pt;">6</span>r/min</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">、</span> <span style="letter-spacing: 2pt; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">98<span style="letter-spacing: 2pt;">4</span>r/min</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">、</span> <span style="letter-spacing: 2pt; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">3</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">34<span style="letter-spacing: 2pt;">4</span>r/min</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">及</span> <span style="letter-spacing: 2pt; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">3</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">77<span style="letter-spacing: 2pt;">2</span>r/min 4</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">个典型风扇转速研究了风扇转速对鸟撞过程的影响;分别选取</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1/6</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">、</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">2/6</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">、</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">3/6</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">、</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">4/6</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">、</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">5/6</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">叶高位置为撞击位置,研究了撞击位置对鸟撞过程的影响.<a name="OLE_LINK2" /><a name="OLE_LINK1">结果表明:叶片旋转对撞击过程中鸟体被切割块数、单个鸟块质量及受冲击叶片数量有直接影响,不考虑叶片旋转条件下的接触力、叶根应力、前缘应力等值明显低于考虑叶片旋转条件,使得对叶片应力及损伤预估偏保守,不利于叶片强度设计,因此在研究鸟撞过程中对叶片旋转运动应予以考虑.</a></span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">83<span style="letter-spacing: 2pt;">6</span>r/min</span><span style="font-family: 方正楷体简体; font-size: 9pt;">转速下鸟体与叶片相互作用方式与其他转速有明显区别,</span><span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">83<span style="letter-spacing: 2pt;">6</span>r/min</span><span style="font-family: 方正楷体简体; font-size: 9pt;">转速下鸟体动能减小,其他转速下鸟体动能增加,且鸟体动能增量随转速增大而增大;</span><span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">83<span style="letter-spacing: 2pt;">6</span>r/min</span><span style="font-family: 方正楷体简体; font-size: 9pt;">转速下前缘应力峰值要大于</span><span style="letter-spacing: 2pt; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1</span><span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">98<span style="letter-spacing: 2pt;">4</span>r/min</span><span style="font-family: 方正楷体简体; font-size: 9pt;">转速,其他转速下,前缘应力峰值随转速增加而增大;接触力、叶根应力随转速的增大而增大.随撞击高度的增加,在撞击点相对速度及叶片扭转角共同作用下,接触力、鸟体动能增量、叶根应力峰值、鸟体动能、叶片前缘应力均呈先增大后减小趋势,撞击</span><span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">3/6</span><span style="font-family: 方正楷体简体; font-size: 9pt;">叶高位置时前缘峰值应力及鸟体动能增量最大,撞击</span><span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">4/6</span><span style="font-family: 方正楷体简体; font-size: 9pt;">叶高位置时叶根峰值应力及接触力最大.</span></span> <br /> 2020年05月06 00:00 2020年05 492 501 2511630 <span>张俊红<sup>1, 2</sup>,刘志远<sup>1</sup>,戴胡伟<sup>1</sup>,Reza Hedayati<sup>3</sup>,袁 一<sup>1</sup>,张桂昌</span> <sup>4</sup> <br /> <span>直接埋藏法修补疲劳裂纹缺陷的研究</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005009 <span> <a name="OLE_LINK30" /> <a name="OLE_LINK28" /> <a name="OLE_LINK27" /> <a name="OLE_LINK33" /> <a name="OLE_LINK32"> <span style="font-family: 方正楷体简体; font-size: 9pt;"> <span> <span>在海洋平台的安全维护中,挖除原始疲劳裂纹缺陷并准备坡口是水下焊接修复工程中一项十分困难的作业步骤</span> </span> </span> </a> <span> <span> <span style="font-family: 方正楷体简体; font-size: 9pt;">.<a name="OLE_LINK39" /><a name="OLE_LINK38">为此,提出一种不挖除原始裂纹缺陷的直接埋藏法来修复疲劳裂纹缺陷.</a>为了探索该技术的可行性,在陆地上制备了模拟补焊试样,<a name="OLE_LINK21" /><a name="OLE_LINK20">通过对试样补焊前后的疲劳性能进行测试,分析研究了直接埋藏法修复后疲劳裂纹出现的位置、试样的疲劳循环周次以及打磨对补焊后试样疲劳循环周次的影响规律</a>.<a name="OLE_LINK43" /><a name="OLE_LINK42">使用</a></span> <span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">Abaqus</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">软件模拟计算了补焊所产生的残余应力和补焊后试样在不同外部载荷作用下原始裂纹尖端的应力情况</span> </span> <span style="font-family: 方正楷体简体; font-size: 9pt;">.试验结果表明,新的疲劳裂纹主要出现在补焊焊趾处和补焊焊道上;补焊后接头的平均疲劳循环周次比原始试样并没有下降,反而提高了</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">36</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">%</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">;<a name="OLE_LINK46">对补焊焊趾进行打磨处理,接头的平均疲劳循环周次比补焊焊趾未打磨的接头提升了</a></span> <span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">16</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">%</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">.</span> <a name="OLE_LINK35" /> <a name="OLE_LINK34"> <span style="font-family: 方正楷体简体; font-size: 9pt;">数值模拟结果显示,补焊焊道收缩在裂纹最深处产生了</span> <span> <span style="font-family: 方正书宋简体; font-size: 9pt;">-</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">15<span style="letter-spacing: 2pt;">7</span>MPa</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">的残余应力.</span> </span> </a> <a name="OLE_LINK37" /> <a name="OLE_LINK36"> <span style="font-family: 方正楷体简体; font-size: 9pt;"> <span>三点弯曲加载时,裂纹最深处的应力由补焊前的</span> </span> <span> <span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">50<span style="letter-spacing: 2pt;">8</span>MPa</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">降为补焊后的</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">9<span style="letter-spacing: 2pt;">4</span>MPa</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">;单轴拉伸时,裂纹最深处的应力由补焊前的</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">48<span style="letter-spacing: 2pt;">0</span>MPa</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">降为补焊后的</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">32<span style="letter-spacing: 2pt;">0</span>MPa</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">.</span> </span> </span> </a> <a name="OLE_LINK41" /> <a name="OLE_LINK40"> <span style="font-family: 方正楷体简体; font-size: 9pt;">该结果表明直接埋藏法补焊所产生的残余压应力是延缓或阻止原始裂纹继续向母材扩展的主要原因.</span> </a> <span style="font-family: 方正楷体简体; font-size: 9pt;">综合试验和模拟结果,可以认为直接埋藏法修补疲劳裂纹在水下焊接修复工程中有着很强的可行性.</span> </span> </span> </span> </span> <br /> 2020年05月06 00:00 2020年05 502 507 1104759 <span>程方杰<sup>1, 2</sup>,孔康骞<sup>1</sup>,欧阳忠宇</span> <sup>1</sup> <br /> <span>船舶抛锚过程中落锚贯入深度研究</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005010 <span> <span style="font-family: 方正楷体简体; font-size: 9pt;">落锚作业是船舶抛锚定位过程的第</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">个环节,在落锚过程中,船锚不仅可能直接撞击海底管线造成危害,而且船锚的贯入深度会影响拖锚的运动轨迹,从而间接影响海底结构物的运行安全,可见确定船舶落锚阶段船锚的最终贯入深度十分重要.为此,首先<a name="OLE_LINK2" /><a name="OLE_LINK1">开展一系列小比尺落锚模型试验,</a><a name="OLE_LINK8" /><a name="OLE_LINK7"><span>分别研究在黏性土和无黏性土中船锚质量和落锚高度对霍尔锚和大抓力锚最终贯入深度的影响,</span></a><span><a name="OLE_LINK10" /><a name="OLE_LINK9">发现贯入深度随船锚质量和落锚高度的增加而呈非线性</a>增加,但增幅不断减缓</span>.然后,结合小比尺模型试验,采用能量法和太沙基极限承载力公式拟合船锚贯入深度的计算公式,并确定式中的经验系数.另外,在小比尺模型试验的基础上,验证船舶落锚的数值模拟方法,并对原型船锚的贯入过程进行分析,讨论贯入过程中船锚姿态变化的过程和规律,以进一步揭示落锚贯入深度与船锚触底动能之间的关系.最后,开展现场船舶落锚试验,对比分析本文公式、</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">Young</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">公式、</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">DNV</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">坠物公式、</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">DNV</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">落管公式与现场实测数据之间的差异,发现试验结果和本文公式吻合良好,在验证本文公式正确性的同时阐明了其他理论算法的适用条件与局限性.</span> </span> <br /> 2020年05月06 00:00 2020年05 508 516 2556256 <span>刘 润,汪嘉钰,别社安</span> <br /> <span>多试验因素耦合下MICP 固化砂土的试验研究</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005011 <span> <a name="OLE_LINK11"> <span style="font-family: 方正楷体简体; font-size: 9pt;">为了优选</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">MICP</span> <span style="font-family: 宋体; font-size: 9pt;">(</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">microbial induced carbonate precipitation</span> <span style="font-family: 宋体; font-size: 9pt;">)</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">固化砂土过程中的试验因素,采用中心注浆法耦合</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">6</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">个试验因素,以圆形硅质砂为试验材料,根据正交试验的设计原则进行了</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">25</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">种工况的</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">MICP</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">砂柱固化试验</span> </a> <span style="font-family: 方正楷体简体; font-size: 9pt;">.检测了砂柱固化过程中反应前后</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">Ca<sup>2</sup></span> <sup> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">+</span> </sup> <span style="font-family: 方正楷体简体; font-size: 9pt;">浓度变化和固化后砂柱各部位的</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">CaCO<sub>3</sub></span> <span style="font-family: 方正楷体简体; font-size: 9pt;">晶体含量,并采用</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">SEM</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">观测了砂柱内部</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">CaCO<sub>3</sub></span> <span style="font-family: 方正楷体简体; font-size: 9pt;">晶体的微观形态.通过分析各个试验因素对</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">Ca<sup>2</sup></span> <sup> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">+</span> </sup> <span style="font-family: 方正楷体简体; font-size: 9pt;">利用率的影响,发现影响</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">Ca<sup>2</sup></span> <sup> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">+</span> </sup> <span style="font-family: 方正楷体简体; font-size: 9pt;">利用率的主要因素有菌液浓度、胶结液浓度和矿化反应时间,且菌液浓度越高,胶结液浓度越低,反应时间越长,</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">Ca<sup>2</sup></span> <sup> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">+</span> </sup> <span style="font-family: 方正楷体简体; font-size: 9pt;">利用率越高.菌液静置过程中存在细菌下沉现象,从而影响</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">CaCO<sub>3</sub></span> <span style="font-family: 方正楷体简体; font-size: 9pt;">晶体的生成位置.固化砂柱内部</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">CaCO<sub>3</sub></span> <span style="font-family: 方正楷体简体; font-size: 9pt;">晶体分布的研究结果表明,矿化生成的</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">CaCO<sub>3</sub></span> <span style="font-family: 方正楷体简体; font-size: 9pt;">会随着砂土中的水流迁徙,浆液的流速越大,砂柱内部晶体的平均含量越高,且分布越均匀.</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">SEM</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">的观测结果显示,固化砂柱内部</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">CaCO<sub>3</sub></span> <span style="font-family: 方正楷体简体; font-size: 9pt;">晶体以方解石为主,但胶结液浓度会影响晶体的尺寸大小.当胶结液浓度高于</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">75<span style="letter-spacing: 2pt;">0</span>mmol/L</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">时,</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">CaCO<sub>3</sub></span> <a name="OLE_LINK19"> </a><a name="OLE_LINK18"> <span style="font-family: 方正楷体简体; font-size: 9pt;">晶体呈现堆叠式发展</span> </a> <span style="font-family: 方正楷体简体; font-size: 9pt;">.当菌液浓度较高并且胶结液静置时间较短时,会出现球霰石的晶体形态.</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">MICP</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">固化砂土的强度随</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">CaCO<sub>3</sub></span> <span style="font-family: 方正楷体简体; font-size: 9pt;">含量的增加而升高,但同时会受到晶体的分布以及大小等因素的影响.</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">MICP</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">固化砂土试验因素的优选结果为:菌液的</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">OD<sub>600</sub></span> <span style="font-family: 方正楷体简体; font-size: 9pt;">值</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">0.5</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">~</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">1.0</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,菌液静置时间</span> <span style="letter-spacing: 2pt; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">3</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">h</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,胶结液浓度不高于</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">50<span style="letter-spacing: 2pt;">0</span>mmol/L</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">,浆液的流速与传输距离相关,胶结液的最优静置时间为使</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">Ca<sup>2</sup></span> <sup> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">+</span> </sup> <span style="font-family: 方正楷体简体; font-size: 9pt;">完全消耗.</span> </span> <br /> 2020年05月06 00:00 2020年05 517 526 2006390 <span>徐宏殷<sup>1, 2</sup>,练继建<sup>1, 2</sup>,闫 玥</span> <sup>1, 2</sup> <br /> <span>铝合金箱形-工字形盘式节点整体变形性能试验研究</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005012 <span> <span style="font-family: 方正楷体简体; font-size: 9pt;">铝合金网壳结构在大跨空间结构中具有广泛的应用前景.南京牛首山佛顶宫大穹顶工程中采用了铝合金网壳结构,其节点包含两种截面杆件,均使用不锈钢环槽铆钉与节点盘进行紧固连接,形成了特殊形式的箱形</span> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">工字形盘式节点.为研究铝合金箱形</span> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">工字形盘式节点在面外弯矩作用下的传力机理、变形性能、节点刚度、破坏模式和极限承载力,开展了箱形</span> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">工字形盘式节点整体试件的静力加载试验,使用有限元软件</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">ABAQUS</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">对试验加载全过程进行了数值模拟,并将试验结果与<a name="OLE_LINK16">相同截面铝合金箱形</a></span> <span> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">工字形盘式节点相连对肢</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">节点的试验结果进行对比分析.试验结果表明:南京牛首山佛顶宫大穹顶工程中采用的铝合金箱形</span> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">工字形盘式节点为半刚性节点,节点刚度较大,整体延性相对较小;在较大面外弯矩作用下构件的上节点盘发生屈曲变形,试件加载破坏时下节点盘仍处于弹性阶段,杆件连接部位腹板出现明显屈曲变形,杆件与上节点盘连接处发生断裂破坏.足尺有限元模型的数值模拟结果与试验结果吻合较好,具有工程应用可靠性.与相同截面的铝合金箱形</span> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">工字形盘式节点相连对肢节点试验结果相比,铝合金箱形</span> <span style="font-family: &quot;Times New Roman&quot;,serif; font-size: 9pt;">-</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">工字形盘式节点</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">6</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">根连接杆件之间的相互作用提高了节点刚度,但在一定程度上降低了节点的延性和抗弯承载力,在设计和使用过程中需进一步加强和改进.</span> </span> </span> <br /> 2020年05月06 00:00 2020年05 527 534 1610448 <span>王元清<sup>1</sup>,张 颖<sup>1</sup>,张俊光<sup>1</sup>,欧阳元文</span> <sup>2</sup> <br /> <span>凯威特单层球面网壳的几何缺陷相关性</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005013 <span> <span style="font-family: 方正楷体简体; font-size: 9pt;">凯威特单层球面网壳结构的稳定性对初始几何缺陷非常敏感,特别是节点位置安装误差造成的结构曲面形状偏差.由于单层网壳结构各节点之间由刚性杆件连接,因而不同节点的位置偏差具有相关性.理论分析和实测数据均表明,单层球面网壳结构中节点距离越远,节点位置偏差的相关性越弱.根据对节点位置偏差相关系数的计算推导和分析,建立以节点空间距离为自变量的相关系数函数,提出初始几何缺陷相关性的分式函数计算模型,并给出具有相关性的初始几何缺陷生成方法.建立凯威特单层球面网壳结构数值模型,根据提出的分式函数模型生成具有相关性的初始几何缺陷,将缺陷引入模型并进行整体稳定性分析,结果表明缺陷相关性会对结构整体稳定承载力产生明显影响.进一步对缺陷相关性进行参数分析,将不同相关程度和不同规模大小的缺陷引入模型中并计算结构整体稳定性,结果表明:初始几何缺陷较小时,相关性总是有利于结构稳定性;而缺陷较大时,结构稳定承载力会随相关性增强先减小后增大,中等程度相关性会对结构稳定性产生不利影响.因此,忽略缺陷相关性可能会使凯威特单层球面网壳结构稳定承载力的计算结果偏于危险,取相关系数为</span> <span style="font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">0.5</span> <span style="font-family: 方正楷体简体; font-size: 9pt;">进行分析,能有效考虑不利的相关缺陷.</span> </span> <br /> 2020年05月06 00:00 2020年05 535 541 1087946 <span>刘 俊,罗永峰,张玉建</span> <br /> <span>自复位RC 框架柱脚节点在不同轴压比下的抗震性能试验研究</span> <br /> /zrb/oa/darticle.aspx?type=view&id=202005014 <span> <p style="line-height: 15pt; layout-grid-mode: char;"><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">自复位</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">RC</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">框架柱脚节点将无黏结预应力钢筋与新型金属消能阻尼器结合,在保证结构足够的承载力和耗能能力的前提下,能有效减小传统框架结构水平地震作用下产生的残余变形.对</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">2</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">个采用了新型可更换阻尼器的自复位</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">RC</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">框架柱脚节点进行了低周往复荷载抗震试验,对比分析了不同轴压比下框架柱脚节点的受力机制、滞回曲线、耗能能力、复位能力等性能.试验结果表明:自复位</span><span style="color: windowtext; font-family: &quot;Time New Roman&quot;,serif; font-size: 9pt;">RC</span><span style="color: windowtext; font-family: 方正楷体简体; font-size: 9pt;">框架柱脚节点的耗能主要来自阻尼器的屈服耗能,不同轴压比下该框架柱脚节点的耗能能力大致相当;高轴压比导致框架柱产生轻微的塑性变形,从而使残余变形增大,相应的复位能力略有降低.</span> </p> </span> <br /> 2020年05月06 00:00 2020年05 542 550 2662769 <span>杨熠明<sup>1</sup>,杨 溥<sup>1, 2</sup>,高浩捷<sup>3</sup>,蔡 森<sup>4</sup>,沈培文</span> <sup>1</sup> <br />