PDF下载 分享
[1]张 为,魏晶晶. 嵌入DenseNet 结构和空洞卷积模块的改进YOLO v3 火灾检测算法[J].天津大学学报(自然科学与工程技术版),2020,53(09):976-983.[doi:10.11784/tdxbz201907079]
 Zhang Wei,Wei Jingjing. Improved YOLO v3 Fire Detection Algorithm Embedded in DenseNet Structure and Dilated Convolution Module[J].Journal of Tianjin University(Science and Technology),2020,53(09):976-983.[doi:10.11784/tdxbz201907079]
点击复制

 嵌入DenseNet 结构和空洞卷积模块的改进YOLO v3 火灾检测算法

参考文献/References:

 

[1] Truong T,Kim J. Fire flame detection in video sequences using multi-stage pattern recognition techniques[J]. Engi-neering Applications of Artificial Intelligence,2012,25(7):1365-1372.

[2] Dimitropoulos K,Barmpoutis P,Grammalidis N. Spa-tio-temporal flame modeling and dynamic texture analysis for automatic video-based fire detection[J]. IEEE Transac-tions on Circuits and Systems for Video Technology,2015,25(2),339-351.

[3] Kong S,Jin D,Li S,et al. Fast fire flame detection in surveillance video using logistic regression and temporal smoothing[J]. Fire Safety Journal,2016,79:37-43.

[4] Han X,Jin J,Wang M,et al. Video fire detection based on Gaussian mixture model and multi-color features [J]. Signal,Image and Video Processing,2017,11(8):1419-1425.

[5] 孟令昀. 基于特征优化的视频火焰检测算法研究[D]. 珠海:暨南大学电气信息学院,2018.

Meng Lingyun. Research on Video Flame Detection Algo-rithm Based on Feature Optimization[D]. Zhuhai:School of Electrical Information,Jinan University,2018(in Chinese).

[6] 周飞燕,金林鹏,董?军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251.

Zhou Feiyan,Jin Linpeng,Dong Jun. Review of convo-lutional neural network[J]. Chinese Journal of Computers,2017,40(6):1229-1251(in Chinese).

[7] Okayama Y. A primitive study of a fire detection method controlled by artificial neural net[J]. Fire Safety Journal,1991,17(6):535-553.

[8] Frizzi S,Kaabi R,Bouchouicha M,et al. Convolution-al neural network for video fire and smoke detection [C]// The 42th Annual Conference of the IEEE Industrial Elec-tronics Society. Florence,Italy,2016:877-882.

[9] Maksymiv O,Rak T,Peleshko D. Real-time fire detec-tion method combining AdaBoost,LBP and convolution-al neural network in video sequence[C]// Experience of Designing and Application of Cad Systems in Microelec-tronics. Polyana,Ukraine,2017:351-353.

[10] Redmon J,Divvala S,Girshick R,et al. You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recog-nition. Las Vegas,NV,USA,2016:779-788.

[11] Redmon J,Farhadi A. YOLO9000:Better,faster,stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,HI,USA,2017:6517-6525.

[12] Redmon J,Farhadi A. Yolo v3[EB/OL]. https://arxiv. org/abs/1804. 02767,2018-04-08.

[13] Liu W,Anguelov D,Erhan D,et al. SSD:Single

shot multiBox detector[C]// European Conference on Computer Vision. Amsterdam,The Netherlands,2016:21-37.

[14] Lin T,Goyal P,Girshick R,et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analy-sis & Machine Intelligence,2020,42(2):318-327.

[15] Girshick R,Donahue J,Darrell T,et al. Rich feature hierarchies for accurate object detection and semantic seg-mentation[C]// 2014 IEEE Conference on Computer Vi-sion and Pattern Recognition. Columbus,OH,USA,2014:580-587.

[16] Girshick R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. Santiago,Chile,2015:1440-1448.

[17] Ren S,He K,Girshick R,et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(6):1137-1149.

[18] Shen D,Chen X,Nguyen M,et al. Flame detection using deep learning[C]// 4th International Conference on Control,Automation and Robotics. Singapore,2018:20-23.

[19] Kim J,Ryu J,Kwak D,et al. A study on flame detec-tion using faster R-CNN and image augmentation tech-niques[J]. Journal of IKEEE,2018,22(4):1079-1087.

[20] Yu F,Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions[EB/OL]. http://arXiv.1511.07122-v1,2015-11-23.

[21] Huang G,Liu Z,Maaten L,et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,HI,USA,2017:2261-2269.

[22] He K,Zhang S,Ren S,et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston,USA,2015:770-778.

[23] 刘学平,李玙乾,刘?励,等. 嵌入SENet结构的改进YOLO v3目标识别算法[J]. 计算机工程,2019(11):1-6.

Liu Xueping,Li Yuqian,Liu Li,et al. Improved YO-LO v3 target recognition algorithm embedded in SENet structure[J]. Computer Engineering,2019(11):1-6(in Chinese).

[24] Dollar P,Wojek C,Schiele B,et al. Pedestrian detec-tion:A benchmark[C]// 2012 IEEE Conference on Com-puter Vision and Pattern Recognition(CVPR). Providence,USA,2009:304-311.

相似文献/References:

[1]徐可欣,崔厚欣,王文波. 血糖无创伤检测技术的基础研究[J].天津大学学报(自然科学与工程技术版),2003,(02):133.
[2]李庆波,徐可欣,汪!日燕. 人体血糖浓度无创伤检测的必要测量条件[J].天津大学学报(自然科学与工程技术版),2003,(02):139.
[3]胡小唐,陈津平,胡晓东,等. 外界振动对SPM测量结果的影响[J].天津大学学报(自然科学与工程技术版),2003,(02):143.
[4]赵 臣,阴炳皓,韩晓军.TSR-1型微型足球机器人视觉系统的研究[J].天津大学学报(自然科学与工程技术版),2003,(06):659.
[5]刘!征,赵小松,张国雄,等. 自由曲面多目视觉检测技术[J].天津大学学报(自然科学与工程技术版),2003,(02):148.
[6]张金利,杨雪松,李!韦华,等. 非离子型表面活性剂水溶液胶团特性模型[J].天津大学学报(自然科学与工程技术版),2003,(02):152.
[7]王洪礼,李强,竺致文. 梯度算法在转子时变控制中的应用[J].天津大学学报(自然科学与工程技术版),2003,(02):156.
[8]张颖,顾平,谭丁. 膜混凝反应器处理轻度污染地表水[J].天津大学学报(自然科学与工程技术版),2003,(02):187.
[9]杨长生,马沛生,夏淑倩. 差热分析法测定多元醇的比热[J].天津大学学报(自然科学与工程技术版),2003,(02):192.
[10]于九皋,刘峰,于璟琳. 包覆包醛氧淀粉固定脲酶制备及对尿素吸附[J].天津大学学报(自然科学与工程技术版),2003,(02):197.

备注/Memo

 通信作者:张 为,tjuzhangwei@tju.edu.cn.

更新日期/Last Update: 2020-08-30