PDF下载 分享
[1]李素梅,丁义修,常永莉,等. 基于视差图指导的无参考立体图像质量评价[J].天津大学学报(自然科学与工程技术版),2020,53(08):854-860.[doi:10.11784/tdxbz201907015]
 Li Sumei,Ding Yixiu,Chang Yongli,et al. No-Reference Stereoscopic Image Quality Assessment Guided by a Disparity Map[J].Journal of Tianjin University(Science and Technology),2020,53(08):854-860.[doi:10.11784/tdxbz201907015]
点击复制

 基于视差图指导的无参考立体图像质量评价

参考文献/References:

 

[1] Chen MingjunCormack L KBovik A C. No-reference quality assessment of natural stereopairs[J]. IEEE Transactions on Image Processing201322(9)3379-3391.

[2] Liu LixiongLiu BaoSu Chechunet al. Binocular spatial activity and reverse saliency driven no-reference stereopair quality assessment[J]. Signal ProcessingImage Communication201758287-299.

[3] Yang JialuAn PingMa Jianet al. No-reference color stereo image quality assessment by learning gradient dictionary-based color visual characteristics[C]// International Symposium on Circuits and Systems(IS-CAS). FlorenceUSA20181-5.

[4] Li FucuiShao FengJiang Qiupinget al. Local and global sparse representation for no-reference quality assessment of stereoscopic images[J]. Information Sciences2018422110-121.

[5] Yue GuanghuiHou ChunpingJiang Qiupinget al. Blind stereoscopic 3D image quality assessment via analysis of naturalnessstructureand binocular asymmetry[J]. Signal Processing2018150204-214.

[6] Yang JianchenZhao YangZhu Yingbaoet al. Blind assessment for stereo images considering binocular characteristics and deep perception map based on deep belief network[J]. Information Sciences20194741-17.

[7] Lü YaqiYu MeiJiang Gangyiet al. No-reference stereoscopic image quality assessment using binocular self-similarity and deep neural network[J]. Signal ProcessingImage Communication201647346-357.

[8] Shao FengTian WeijunLin Werisiet al. Towards a blind deep quality evaluator for stereoscopic images based on monocular and binocular interactions[J]. IEEE Transactions on Image Processing201625(5)2059-2074.

[9] 田维军,邵?枫,蒋刚毅,等. 基于深度学习的无参考立体图像质量评价[J]. 计算机辅助设计与图形学学报,201628(6)968-975.

Tian WeijunShao FengJiang Gangyiet al. No-reference stereoscopic image quality assessment based on deep learning[J]. Journal of Computer-Aided Design and


Computer Graphics201628(6)968-975(in Chinese).

[10] Zhang WeiQu ChenfeiMa Linet al. Learning structure of stereoscopic image for no-reference quality assessment with convolutional neural network[J]. Pattern Recognition201659176-187.

[11] Ding YongDeng RuizheXie Xinet al. No-reference stereoscopic image quality assessment using convolutional neural network for adaptive feature extraction[J]. IEEE Access2018637595-37603.

[12] Sang QingbinGu TingtingLi Chaofenget al. Stereoscopic image quality assessment via convolutional neural networks[C]// 2017 International Smart Cities Conference. WuxiChina20171-2.

[13] Oh HAhn SKim Jet al. Blind deep 3D image quality evaluation via local to global feature aggregation[J]. IEEE Transactions on Image Processing201726(10)4923-4936.

[14] Fezza S AMohamed-Chaker L. Stereoscopic 3D image quality assessment based on cyclopean view and depth map[C]// IEEE 14th International Conference on Consumer Electronics. BerlinGermany2015335-339.

[15] Chen MingjunSu ChechunDoKyoung Ket al. Full-reference quality assessment of stereoscopic images by modeling binocular rivalry[C]// 2012 Conference Record of the 46th Asilomar Conference on SignalsSystems and Computers(ASILOMAR). Pacific GroveUSA2012721-725.

[16] Lin YancongYang JiachenWen Luet al. Quality index for stereoscopic images by jointly evaluating cyclopean amplitude and cyclopean phase[J]. IEEE Journal of Selected Topics in Signal Processing201611(1)89-101.

[17] Hu JieShen LiAlbanie Set al. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake CityUSA20187132-7141.

[18] Ding JianKlein S ALevi D M. Binocular combination of phase and contrast explained by a gain-control and gain-enhancement model[J]. Journal of Vision201313(2)1-31. Huang GaoLiu Zhuangvan der Maaten Let al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). HonoluluUSA20172261-2269.

相似文献/References:

[1]徐可欣,崔厚欣,王文波. 血糖无创伤检测技术的基础研究[J].天津大学学报(自然科学与工程技术版),2003,(02):133.
[2]李庆波,徐可欣,汪!日燕. 人体血糖浓度无创伤检测的必要测量条件[J].天津大学学报(自然科学与工程技术版),2003,(02):139.
[3]胡小唐,陈津平,胡晓东,等. 外界振动对SPM测量结果的影响[J].天津大学学报(自然科学与工程技术版),2003,(02):143.
[4]赵 臣,阴炳皓,韩晓军.TSR-1型微型足球机器人视觉系统的研究[J].天津大学学报(自然科学与工程技术版),2003,(06):659.
[5]刘!征,赵小松,张国雄,等. 自由曲面多目视觉检测技术[J].天津大学学报(自然科学与工程技术版),2003,(02):148.
[6]张金利,杨雪松,李!韦华,等. 非离子型表面活性剂水溶液胶团特性模型[J].天津大学学报(自然科学与工程技术版),2003,(02):152.
[7]王洪礼,李强,竺致文. 梯度算法在转子时变控制中的应用[J].天津大学学报(自然科学与工程技术版),2003,(02):156.
[8]张颖,顾平,谭丁. 膜混凝反应器处理轻度污染地表水[J].天津大学学报(自然科学与工程技术版),2003,(02):187.
[9]杨长生,马沛生,夏淑倩. 差热分析法测定多元醇的比热[J].天津大学学报(自然科学与工程技术版),2003,(02):192.
[10]于九皋,刘峰,于璟琳. 包覆包醛氧淀粉固定脲酶制备及对尿素吸附[J].天津大学学报(自然科学与工程技术版),2003,(02):197.

备注/Memo

 通信作者:丁义修,370259620@qq.com

更新日期/Last Update: 2020-07-15