PDF下载 分享
[1]何 凯,黄婉蓉,刘 坤,等. 基于改进LeNet-5 模型的手写体中文识别[J].天津大学学报(自然科学与工程技术版),2020,53(08):847-853.[doi:10.11784/tdxbz201905020]
 He Kai,Huang Wanrong,Liu Kun,et al. Chinese Handwriting Recognition Using the Improved LeNet-5Model[J].Journal of Tianjin University(Science and Technology),2020,53(08):847-853.[doi:10.11784/tdxbz201905020]
点击复制

 基于改进LeNet-5 模型的手写体中文识别

参考文献/References:

 [1] Wu YichaoYin FeiLiu Chenglinet al. Improving handwritten Chinese text recognition using neural network language models and convolutional neural network shape models[J]. Pattern Recognition201765251-264.

[2] Yin FeiWang QiufengZhang Xuyaoet al. ICDAR 2013 Chinese handwriting recognition competition[C]// 2013 12th International Conference on Document Analysis and Recognition. WashingtonDCUSA20131464-1470.

[3] 金连文,钟卓耀,杨?钊,等. 深度学习在手写汉字识别中的应用综述[J]. 自动化学报,201642(8)1125-1141.

Jin LianwenZhong ZhuoyaoYang Zhaoet al. Applications of deep learning for handwritten Chinese character recognitionA review[J]. Acta Automatica Sinica201642(8)1125-1141(in Chinese).

[4] Mangasarian O LMusicant D R. Data Discrimination via Nonlinear Generalized Support Vector Machines[M]. BostonSpringer2001233-251.

[5] 安金龙,王正欧,马振平. 基于密度法的模糊支持向量机[J]. 天津大学学报,200437(6)544-548.

An JinlongWang Zheng’ouMa Zhenping. Fuzzy support vector machine based on density[J]. Journal of Tianjin University200437(6)544-548(in Chi-nese).

[6] Wei XiaohuaLu ShujingLu Yue. Building a compact MQDF classifier by sparse coding and vector quantize-tion technique[C]// 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). KyotoJapan2017454-459.

[7] Liu ChenglinSako HFujisawa H. Discriminative learning quadratic discriminant function for handwriting recognition[J]. IEEE Transactions on Neural Networks200415(2)430-444.

[8] Lecun YJackel L DBottou Let al. Learning algorithms for classificationA comparison on handwritten digit recognition[J]. Neural NetworksThe Statistical Mechanics Perspective1995261261-276.

[9] Liu ChenglinYin FeiWang Qiufenget al. ICDAR 2011 Chinese handwriting recognition competition[C]// 2011 11th International Conference on Document Analysis and Recognition. BeijingChina20111464-1469.

[10] Wu ChunpengFan WeiHe Yuanet al. Handwritten character recognition by alternately trained relaxation convolutional neural network[C]// 2014 14th Interna-tional Conference on Frontiers in Handwriting Recognition. CreteGreece2014291-296.

[11] Lecun YBottou LBengio Yet al. Gradient-based learning applied to document recognition[J]. Proceed-ings of the IEEE199886(11)2278-2324.

[12] Yu FKoltun V. Multi-Scale Context Aggregation by Dilated Convolutions[EB/OL]. https: //arxiv.org/abs/15-11.071222015-11-23.

[13] Szegedy CChristian VIoffe Set al. Rethinking the inception architecture for computer vision [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las VegasUSA20162818-2826.

[14] Simonyan KZisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[EB/OL]. https//arxiv. org/abs/1409. 15562014-09-14.

[15] Ramachandran PZoph BLe Q V. Searching for Activation Functions[EB/OL]. https: //arxiv.org/abs/1710. 059412017-10-16.

[16] Liu ChenglinYin FeiWang Dahanet al. CASIA online and offline chinese handwriting databases[C]// 2011 International Conference on Document Analysis and Recognition. BeijingChina201137-41.

[17] Wang YanweiLi XinLiu Changsonget al. An MQDF-CNN hybrid model for offline handwritten Chinese character recognition[C]// 2014 14th International Conference on Frontiers in Handwriting Recognition. CreteGreece2014246-249.

[18] Liu ChenglinYin FeiWang Dahanet al. Chinese handwriting recognition contest 2010 [C]// 2010 Chinese Conference on Pattern Recognition(CCPR). ChongqingChina20101-5.

[19] Zhong ZhuoyaoJin LianwenXie Zecheng. High performance offline handwritten Chinese character recognition using googlenet and directional feature maps[C]// 2015 13th International Conference on Document Analysis and Recognition(ICDAR). NancyFrance2015846-850.

[20] 王莉丽,于?. 一种基于双向投影的文本图像字符分割方法[J]. 数字技术与应用,2017(5)74-75.

Wang LiliYu Yin. Text image character segmentation method based on bidirectional projection[J]. Digital Technology and Application2017(5)74-75(in Chinese).

[21] 路敬祎,薛?征,邵克勇,等. 基于改进的连通域算法与垂直投影相结合的车牌字符分割[J]. 自动化技术与应用,201534(12)93-97.

Lu JingyiXue ZhengShao Keyonget al. License plate character segmentation based on improved connected component and vertical projection[J]. Techniques of Automation and Applications201534(12)93-97(in Chinese).

[22] Xiao XuefengJin LianwenYang Yafenget al. Building fast and compact convolutional neural networks for offline handwritten Chinese character recognition[J]. Pattern Recognition20177272-81. Szegedy CLiu WeiJia Yangqinget al. Going deeper with convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. BostonUSA20151-9.

相似文献/References:

[1]徐可欣,崔厚欣,王文波. 血糖无创伤检测技术的基础研究[J].天津大学学报(自然科学与工程技术版),2003,(02):133.
[2]李庆波,徐可欣,汪!日燕. 人体血糖浓度无创伤检测的必要测量条件[J].天津大学学报(自然科学与工程技术版),2003,(02):139.
[3]胡小唐,陈津平,胡晓东,等. 外界振动对SPM测量结果的影响[J].天津大学学报(自然科学与工程技术版),2003,(02):143.
[4]赵 臣,阴炳皓,韩晓军.TSR-1型微型足球机器人视觉系统的研究[J].天津大学学报(自然科学与工程技术版),2003,(06):659.
[5]刘!征,赵小松,张国雄,等. 自由曲面多目视觉检测技术[J].天津大学学报(自然科学与工程技术版),2003,(02):148.
[6]张金利,杨雪松,李!韦华,等. 非离子型表面活性剂水溶液胶团特性模型[J].天津大学学报(自然科学与工程技术版),2003,(02):152.
[7]王洪礼,李强,竺致文. 梯度算法在转子时变控制中的应用[J].天津大学学报(自然科学与工程技术版),2003,(02):156.
[8]张颖,顾平,谭丁. 膜混凝反应器处理轻度污染地表水[J].天津大学学报(自然科学与工程技术版),2003,(02):187.
[9]杨长生,马沛生,夏淑倩. 差热分析法测定多元醇的比热[J].天津大学学报(自然科学与工程技术版),2003,(02):192.
[10]于九皋,刘峰,于璟琳. 包覆包醛氧淀粉固定脲酶制备及对尿素吸附[J].天津大学学报(自然科学与工程技术版),2003,(02):197.

备注/Memo

 通信作者:何 凯,hekai@tju.edu.cn.

更新日期/Last Update: 2020-07-15