PDF下载 分享
 Yin Qiuxiang,Zhao Xun,et al.Simulation of the Crystal Morphology of Ampicillin[J].Journal of Tianjin University(Science and Technology),2020,53(02):169-179.[doi:10.11784/tdxbz201901032]



[1] Boerrigter S X M,Josten G P H,van de Streek J,et al. MONTY:Monte Carlo crystal growth on any crys-tal structure in any crystallographic orientation;application to fats[J]. The Journal of Physical Chemis-try A,2004,108(27):5894-5902.

[2] Boerrigter S X M,Cuppen H M,Ristic R I,et al. Explanation for the supersaturation-dependent mor-phology of monoclinic paracetamol[J]. Crystal Growth & Design,2002,2(5):357-361.

[3] Deij M A,van Eupen J,Meekes H,et al. Experi-mental and computational morphology of three poly-morphs of the free base of Venlafaxine:A comparison of morphology prediction methods[J]. International Journal of Pharmaceutics,2008,353(1/2):113-123.

[4] Cuppen H M,Beurskens G,Kozuka S,et al. Crystal structure and growth behavior of aspartame form IA[J]. Crystal Growth & Design,2005,5(3):917-923.

[5] Kuvadia Z B,Doherty M F. Spiral growth model for faceted crystals of non-centrosymmetric organic mole-cules grown from solution[J]. Crystal Growth & De-sign,2011,11(7):2780-2802.

[6] Sun Y,Tilbury C J,Reutzel-Edens S M,et al. Mod-eling olanzapine solution growth morphologies[J]. Crystal Growth & Design,2018,18(2):905-911.

[7] Tilbury C J,Green D A,Marshall W J,et al. Predict-ing the effect of solvent on the crystal habit of small organic molecules[J]. Crystal Growth & Design,2016,16(5):2590-2604.

[8] Boles M O,Girven R J. The structures of ampicillin:A comparison of the anhydrate and trihydrate forms[J]. Acta Crystallographica Section B,1976,32(8):2279-2284.

[9] Shukla A,Khan E,Srivastava A,et al. A computa-tional study on molecular structure,multiple interac-tions,chemical reactivity and molecular docking stud-ies on 6 [D(-)α-amino-phenyl-acetamido] penicillanic acid (ampicillin)[J]. Molecular Simulation,2016,42(11):863-873.

[10] Larsen A S,Rantanen J,Johansson K E. Computa-tional dehydration of crystalline hydrates using molecu-lar dynamics simulations[J]. Journal of Pharmaceutical Sciences,2017,106(1):348-355.

[11] Ottens M,Lebreton B,Zomerdijk M,et al. Crystalli-zation kinetics of ampicillin[J]. Industrial & Engineer-ing Chemistry Research,2001,40(22):4821-4827.

[12] Ottens M,Lebreton B,Zomerdijk M,et al. Impurity effects on the crystallization kinetics of ampicillin[J]. Industrial & Engineering Chemistry Research,2004,43(24):7932-7938.

[13] Encarnacio?n-Go?mez L G,Bommarius A S,Rousseau R W. Crystallization kinetics of ampicillin using online monitoring tools and robust parameter estimation[J]. Industrial & Engineering Chemistry Research,2016,55(7):2153-2162.

[14] Turner M J,McKinnon J J,Wolff S K,et al. Crystal Explorer17[Z]. Australia:University of Western Aus-tralia,2007.

[15] Burton W K,Cabrera N,Frank F C. The growth of crystals and the equilibrium structure of their surfac-es[J]. Phil Trans R Soc Lond A,1951,243(866):299-358.

[16] Snyder R C,Doherty M F. Predicting crystal growth by spiral motion[J]. Proceedings of the Royal Society of London A,2009,465(2104):1145-1171.

[17] Chernov A A,Rashkovich L N,Vekilov P G. Steps in solution growth:Dynamics of kinks,bunching and turbulence[J]. Journal of Crystal Growth,2005,275 (1/2):1-18.

[18] Voronkov V V. The movement of an elementary step by means of the formation of one-dimensional nu-clei[J]. Sov Phys Cryst,1970,15:8-13.

[19] Lovette M A,Doherty M F. Reinterpreting edge ener-gies calculated from crystal growth experiments[J]. Journal of Crystal Growth,2011,327(1):117-126.

[20] Hurle D T J. Handbook of Crystal Growth[M]. USA:Elsevier Science & Technology,1993.

[21] Tilbury C J,Joswiak M N,Peters B,et al. Modeling step velocities and edge surface structures during growth of non-centrosymmetric crystals[J]. Crystal Growth & Design,2017,17(4):2066-2080.

[22] Chernov A A. Modern Crystallography Ⅲ:Crystal Growth[M]. USA:Springer Science & Business Media,2012.

[23] Beerbower A. Surface free energy:A new relationship to bulk energies[J]. Journal of Colloid and Interface Science,1971,35(1):126-132.

[24] Hansen C M. Hansen Solubility Parameters:A User’s Handbook[M]. USA:CRC Press,2002.

[25] Xiao R F,Alexander J I D,Rosenberger F. Growth morphologies of crystal surfaces[J]. Physical Review A,1991,43(6):2977.

[26] Shim H M,Kim H S,Koo K K. Molecular modeling on supersaturation-dependent growth habit of 1,1-diamino-2,2-dinitroethylene[J]. Crystal Growth & Design,2015,15(4):1833-1842.

[27] Shim H M,Koo K K. Prediction of growth habit of β-cyclotetramethylene-tetranitramine crystals by the first-principles models[J]. Crystal Growth & Design,2015,15(8):3983-3991.

[28] Dauber-Osguthorpe P,Roberts V A,Osguthorpe D J,et al. Structure and energetics of ligand binding to proteins:Escherichia coli dihydrofolate reductase-trimethoprim,a drug-receptor system[J]. Proteins:Structure,Function,and Bioinformatics,1988,4(1):31-47.

[29] Hartman P,Perdok W G. On the relations between structure and morphology of crystals. I[J]. Acta Crys-tallographica,1955,8(1):49-52.

[30] Zhu H,Grant D J W. Influence of water activity in organic solvent+water mixtures on the nature of the crystallizing drug phase. 2. Ampicillin[J]. International Journal of Pharmaceutics,1996,139(1/2):33-43.

[31] Dauber-Osguthorpe P,Roberts V A,Osguthorpe D J,et al. Powder Diffraction:Theory and Practice[M]. England:Royal Society of Chemistry,2015.



更新日期/Last Update: 2020-02-13