PDF下载 分享
[1]何 凯,王 阳,刘志国,等.基于超像素运动统计的误匹配去除方法[J].天津大学学报(自然科学与工程技术版),2020,53(02):147-153.[doi:10.11784/tdxbz201812028]
 He Kai,Wang Yang,Liu Zhiguo,et al.Mismatch Removal Using Superpixel Motion Statistics[J].Journal of Tianjin University(Science and Technology),2020,53(02):147-153.[doi:10.11784/tdxbz201812028]
点击复制

基于超像素运动统计的误匹配去除方法

参考文献/References:

[1] 何 凯,闫佳星,魏 颖,等. 基于改进光流场模型的非刚性图像配准[J]. 天津大学学报:自然科学与工程技术版,2018,51(5):491-496.

He Kai,Yan Jiaxing,Wei Ying,et al. Nonrigid image registration using improved optical flow field model[J]. Journal of Tianjin University:Science and Technology,2018,51(5):491-496(in Chinese).

[2] 任克强,胡梦云. 基于改进SURF算子的彩色图像配准算法[J]. 电子测量与仪器学报,2016,30(5):748-756.

Ren Keqiang,Hu Mengyun. Color image registration al-gorithm based on improved SURF[J]. Journal of Elec-tronic Measurement and Instrumentation,2016,30(5):748-756(in Chinese).

[3] Rublee E,Rabaud V,Konolige K,et al. ORB:An efficient alternative to SIFT or SURF[C]// 2011 Interna-tional Conference on Computer Vision. Barcelona,Spain,2011:2564-2571.

[4] Bian J,Lin W Y,Matsushita Y,et al. GMS:Grid-based motion statistics for fast,ultra-robust feature corre-spondence[C]// 2017 IEEE Conference on Computer Vi-sion and Pattern Recognition(CVPR). Honolulu,HI,USA,2017:2828-2837.

[5] 王天召,徐克虎,陈金玉. 基于K-means聚类和RANSAC的图像配准算法研究[J]. 计算机工程与科学,2014,36(9):1765-1769.

Wang Tianzhao,Xu Kehu,Chen Jinyu. Research on the image registration algorithm based on K-means clustering and RANSAC[J]. Computer Engineering and Science,2014,36(9):1765-1769(in Chinese).

[6] Torr P H S,Zisserman A. MLESAC:A new robust estimator with application to estimating image geome-try[J]. Computer Vision and Image Understanding,2000,78(1):138-156.

[7] Ni K,Jin H,Dellaert F. GroupSAC:Efficient consen-sus in the presence of groupings[C]// 2009 IEEE 12th In-ternational Conference on Computer Vision. Kyoto,Japan,2009:2193-2200.

[8] 王 可,贾松敏,李秀智. 基于全概率更新的改进RANSAC算法[J]. 控制与决策,2017,32(3):427-434.

Wang Ke,Jia Songmin,Li Xiuzhi. lmproved RANSAC algorithm based on total probability updating[J]. Control and Decision,2017,32(3):427-434(in Chinese).

[9] Tran Q H,Chin T J,Carneiro G,et al. In defence of RANSAC for outlier rejection in deformable registra-tion[C]// European Conference on Computer Vision. Ber-lin,Germany,2012:274-287.

[10] Myronenko A,Song X. Point set registration:Coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(12):2262-2275.

[11] Ma J,Zhao J,Tian J,et al. Robust point matching via vector field consensus[J]. IEEE Transactions on Image Processing,2014,23(4):1706-1721.

[12] Wang G,Wang Z,Chen Y,et al. Learning coherent vector fields for robust point matching under manifold regularization[J]. Neurocomputing,2016,216:393-401.

[13] Achanta R,Shaji A,Smith K,et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2012,34(11):2274-2282.

[14] Stutz D,Hermans A,Leibe B. Superpixels:An evalua-tion of the state-of-the-art[J]. Computer Vision and Image Understanding,2017,166(2018):1-27.

[15] Lin W Y,Liu S,Lai J H,et al. Dimensionality’s bless-ing:Clustering images by underlying distribution [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA,2018:5784-5793.

[16] Butler D J,Wulff J,Stanley G B,et al. A naturalistic open source movie for optical flow evaluation[C]// Euro-pean Conference on Computer Vision. Berlin,Germany,2012:611-625.


备注/Memo

通信作者:何 凯,hekai@tju.edu.cn.

更新日期/Last Update: 2020-02-07