PDF下载 分享
[1]董 娜,常建芳,吴爱国.基于融合算法优化的卷积神经网络预测方法[J].天津大学学报(自然科学与工程技术版),2019,52(09):990-998.[doi:10.11784/tdxbz201809056]
 Dong Na,Chang Jianfang,Wu Aiguo.Convolution Neural Network Prediction Method Based on the Chaotic Hybrid Algorithm[J].Journal of Tianjin University(Science and Technology),2019,52(09):990-998.[doi:10.11784/tdxbz201809056]
点击复制

基于融合算法优化的卷积神经网络预测方法

参考文献/References:

[1] 田翠霞,黄 敏,朱启兵. 基于EMD-LMD-LSSVM联合模型的逐时太阳辐照度预测[J]. 太阳能学报,2018,39(2):504-513. Tian Cuixia,Huang Min,Zhu Qibing,Hourly solar irradiance forecast based on EMD-LMD-LSSVM joint model[J]. Acta Energiae Solaris Sinica , 2018 ,39(2):504-513(in Chinese).
[2] 孟品超,李学源,贾洪飞,等. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报:工学版,2018,48(2):448-453. Meng Pinchao,Li Xueyuan,Jia Hongfei,et al. Shorttime rail transit passenger flow real-time prediction based on moving average[J]. Journal of Jilin University:Engineering and Technology Edition,2018,48(2):448-453(in Chinese).
[3] 黄 璇,郭立红,李 姜,等. 改进粒子群优化BP神经网络的目标威胁估计[J]. 吉林大学学报:工学版,2017,47(3):996-1002. Huang Xuan,Guo Lihong,Li Jiang,et al. Target threat assessment based on BP neural network optimized by modified particle swarm optimization[J]. Journal of Jilin University:Engineering and Technology Edition,2017,47(3):996-1002(in Chinese).
[4] 郭 伟,李明家,李 涛,等. 基于APSO_WLSSVM 算法的Hammerstein ARMAX 模型参数辨识[J]. 中国科技论文,2018,13(2):136-143. Guo Wei,Li Mingjia,Li Tao,et al. Parameter identification of Hammerstein ARMAX model based on APSO__WLSSVM algorithm[J]. China Sciencepaper,2018,13(2):136-143(in Chinese).
[5] Alam S. Performance of Alzheimer disease classification based on PCA , Linear SVM , and multi-kernel SVM[C]// The Eighth International Conference on Ubiquitous and Future Networks,IEEE. Vienna,Austria,2016:987-989.
[6] Zhou Y,Cui X,Hu Q,et al. Improved multi-kernel SVM for multimodal and imbalanced dialogue act classification[C]// International Joint Conference on Neural Networks. Killarney,Ireland,2015:1-8.
[7] Rabbi K M,Nandi I,Saleh A S,et al. Prediction of solar irradiation in Bangladesh using artificial neural network(ANN)and data mapping using GIS technology[C]// Development in the in Renewable Energy Technology,IEEE. Dhaka,Bangladesh,2016:1-6.
[8] Anamika,Kumar N,Akella A K. Prediction and efficiency evaluation of solar energy resources by using mixed ANN and DEA approaches[C]// Pes General Meeting Conference & Exposition.National Harbor,MD,USA,2014:1-5.
[9] Yadav A K,Malik H,Chandel S S. ANN based prediction of daily global solar radiation for photovoltaics applications[C]// India Conference,IEEE. New Delhi,India,2016:1-5.
[10] AMS 2013—2014 solar energy prediction contest,forecast daily solar energy with an ensemble of weather models[EB/OL]. https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest,2014.
[11] Chiang H D,Chen L G,Liu R P,et al. Group-based chaos genetic algorithm and non-linear ensemble of neural networks for short-term load forecasting[J]. IET Generation Transmission & Distribution , 2016 ,10(6):1440-1447.
[12] Zhang H,Shen J H,Zhang T N,et al. An improved chaotic particle swarm optimization and its application in investment[C]// International Symposium on Computational Intelligence and Design,IEEE. Wuhan,China,2008:124-128.
[13] Mcgovern A,Gagne D J,Eustaquio L,et al. Solar energy prediction:An international contest to initiate interdisciplinary research on compelling meteorological problems[J]. Bulletin of the American Meteorological Society,2012,96(8):1388-1393.

备注/Memo

通信作者:常建芳,changjianfang@tju.edu.cn.

更新日期/Last Update: 2019-07-14