PDF下载 分享
[1]董晓燕,齐凤娟,张焕,等.Cu2+诱导的Aβ40种子的特性及其对Aβ40聚集的影响[J].天津大学学报(自然科学版),2018,(12):1287-1295.[doi:10.11784/tdxbz201801018]
 Dong Xiaoyan,Qi Fengjuan,Zhang Huan,et al.Characteristics of Cu2+-Mediated Aβ40 Seeds and Their Effects on Aβ40 Aggregation[J].Journal of Tianjin University,2018,(12):1287-1295.[doi:10.11784/tdxbz201801018]
点击复制

Cu2+诱导的Aβ40种子的特性及其对Aβ40聚集的影响

参考文献/References:

[1] Selkoe D J. Alzheimer’s disease:Genotypes, phenotype, and treatments[J]. Science, 1997, 275(5300):630-631.
[2] Dickson D W. Neuropathological diagnosis of Alzheimer’s disease:A perspective from longitudinal clinicopathological studies[J]. Neurobiology of Aging, 1997, 18(4):S21-S26.
[3] Masters C L, Simms G, Weinman N A, et al. Amyloid plaque core protein in Alzheimer disease and down syndrome[J]. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(12):4245-4249.
[4] Glenner G G, Wong C W. Alzheimer’s disease:Initial report of the purification and characterization of a novel cerebrovascular amyloid protein[J]. Biochemical and Biophysical Research Communications, 1984, 120(3):885-890.
[5] Bernstein S L, Dupuis N F, Lazo N D, et al. Amyloid-beta protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease[J]. Nature Chemistry, 2009, 1(4):326-331.
[6] Kayed R, Head E, Thompson J L, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis[J]. Science, 2003, 300(5618):486-489.
[7] Schmidt M, Sachse C, Richter W, et al. Comparison of Alzheimer abeta(1-40)and abeta(1-42)amyloid fibrils reveals similar protofilament structures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(47):19813-19818.
[8] Cohen S I, Linse S, Luheshi L M, et al. Proliferation of amyloid-β 42 aggregates occurs through a secondary nucleation mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24):9758-9763.
[9] Dong J, Atwood C S, Anderson V E, et al. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores:Raman microscopic evidence[J]. Biochemistry, 2003, 42(10):2768-2773.
[10] Lovell M A, Robertson J D, Teesdale W J, et al. Copper, iron and zinc in Alzheimer’s disease senile plaques [J]. Journal of the Neurological Sciences, 1998, 158(1):47-52.
[11] Opazo C, Huang X, Cherny R A, et al. Metalloenzyme-like activity of Alzheimer’s disease β-amyloid:Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2[J]. Journal of Biological Chemistry, 2002, 277(43):40302-40308.
[12] Viles J H. Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer’s, Parkinson’s and prion diseases[J]. Coordination Chemistry Reviews, 2012, 256(19/20):2271-2284.
[13] Chen W T, Liao Y H, Yu H M, et al. Distinct effects of Zn2+, Cu2+, Fe3+, and Al3+ on amyloid-beta stability, oligomerization, and aggregation:Amyloid-beta destabilization promotes annular protofibril formation[J]. The Journal of Biological Chemistry, 2011, 286(11):9646-9656.
[14] Faller P, Hureau C, Berthoumieu O. Role of metal ions in the self-assembly of the Alzheimer’s amyloid-β peptide [J]. Inorganic Chemistry, 2013, 52(21):12193-12206.
[15] Xie B L, Dong X Y, Wang Y J, et al. Multifunctional-ity of acidulated serum albumin on inhibiting Zn2+-mediated amyloid β-protein fibrillogenesis and cytotoxicity[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2015, 31(26):7374-7380.
[16] Du X B, Wang Z, Zheng Y B, et al. Inhibitory effect of selenoprotein P on Cu+/Cu2+-induced Aβ42 aggregation and toxicity[J]. Inorganic Chemistry, 2014, 53(3):1672-1678.
[17] Eskici G, Axelsen P H. Copper and oxidative stress in the pathogenesis of Alzheimer’s disease[J]. Biochemis-try, 2012, 51(32):6289-6311.
[18] Dorlet P, Gambarelli S, Faller P, et al. Pulse EPR spectroscopy reveals the coordination sphere of copper(II)ions in the 1-16 amyloid-beta peptide:A key role of the first two N-terminus residues[J]. Angewandte Chemie, 2009, 121(49), 9437-9440.
[19] Faller P, Hureau C, La Penna G. Metal ions and intrinsically disordered proteins and peptides:From Cu/Zn amyloid-beta to general principles[J]. Accounts of Chemical Research, 2014, 47(8):2252-2259.
[20] Zatta P, Drago D, Bolognin S, et al. Alzheimer’s disease, metal ions and metal homeostatic therapy[J]. Trends in Pharmacological Sciences, 2009, 30(7):346-355.
[21] Bishop G M, Robinson S R. Quantitative analysis of cell death and ferritin expression in response to cortical iron:Implications for hypoxia-ischemia and stroke[J]. Brain Research, 2001, 907(1/2):175-187.
[22] Adlard P A, Bush A I. Metals and Alzheimer’s disease [J]. Journal of Alzheimers Disease Jad, 2006, 10(2/3):145-163.
[23] Schlief M L, West T, Craig A M, et al. Role of the menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity[J]. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 2006, 103(40):14919-14924.
[24] Pedersen J T, ?stergaard J, Rozlosnik N, et al. Cu(Ⅱ)mediates kinetically distinct, non-amyloidogenic aggregation of amyloid-beta peptides[J]. Journal of Biological Chemistry, 2011, 286(30):26952-26963.
[25] Wang Q, Shah N, Zhao J, et al. Structural, morphological and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers[J]. Physical Chemistry Chemical Physics, 2011, 13(33):15200-15210.
[26] Sarell C J, Wilkinson S R, Viles J H. Substoichiometric levels of Cu2+ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-{beta} from Alzheimer disease[J]. Journal of Biological Chemistry, 2010, 285(53):41533-41540.
[27] Brzyska M, Trzesniewska K, Wieckowska A, et al. Electrochemical and conformational consequences of copper(Cu(Ⅰ) and Cu(Ⅱ))binding to β-amyloid(1-40)[J]. ChemBioChem, 2010, 10(6):1045-1055.
[28] Damante C A, ?sz K, Nagy Z, et al. The metal loading ability of β-amyloid N-terminus:A combined potentiometric and spectroscopic study of copper (Ⅱ) com-plexes with β-amyloid(1-16), its short or mutated peptide fragments, and its polyethylene glycol(PEG)-ylated analogue[J]. Inorganic Chemistry, 2008, 47(20):9669-9683.
[29] Morriss-Andrews A, Bellesia G, Shea J E. Beta-sheet propensity controls the kinetic pathways and morphologies of seeded peptide aggregation[J]. Journal of Chemical Physics, 2012, 137(14):145104-1-145104-9.
[30] Huang X, Cuajungco M P, Atwood C S, et al. Cu(Ⅱ) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction[J]. Journal of Biological Chemistry, 1999,
274(52):37111-37116.

备注/Memo

收稿日期: 2018-01-03; 修回日期: 2018-02-26.
作者简介: 董晓燕(1962—), 女, 博士, 教授.
通讯作者: 董晓燕, d_xy@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(21376172).
Supported by the National Natural Science Foundation of China(No.,21376172).

更新日期/Last Update: 2018-12-10