PDF下载 分享
 Jiang Shuhao,Zhang Liyi,Zhang Zhixin.Recommendation Algorithm for Optimizing Diversity Based on Personalization[J].Journal of Tianjin University,2018,(10):1042-1049.[doi:10.11784/tdxbz201708037]



[1] Adomavicius G, Kwon Y. Optimization-based approaches for maximizing aggregate recommendation diversity[J]. INFORMS Journal on Computing, 2014(24):896-911.
[2] Castells P, Wang J, Lara R, et al. Workshop on novelty and diversity in recommender systems:Diversity [C]//Acm Conference on Recommender Systems. Chicago, USA, 2011:393-394.
[3] Castells P, Vargas S, Wang J. Novelty and diversity metrics for recommender systems:Choice, discovery and relevance[C]//Proceedings of International Workshop on Diverty. Chicago, USA, 2013:29-37.
[4] Barraza-Urbina A, Heitmann B, Hayes C, et al. Xplodiv:An exploitation-exploration aware diversification approach for recommender systems[C]//Proceed-ings of the 28th International Flairs Conference. Hollywod, USA, 2015:1-6.
[5] Cho Y H, Kim J K. Application of Web usage mining and product taxonomy to collaborative recommendations in e-commerce[J]. Expert Systems with Applications, 2004(26):233-246.
[6] Bobadilla T, Ortega F, Hernando A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013(46):109-132.
[7] Yu F, Zeng A, Gillard S, et al. Network-based recommendation algorithms:A review[J]. Physica A:Statistical Mechanics and Its Applications, 2016(452):192-208.
[8] Zhou T, Jiang L L, Su R Q. Effect of initial configuration on network based recommendation[J]. Europhys Lett, 2008, 81(5):58004.
[9] Candillier L, Chevalier M, Dudognon D, et al. Diversity in recommender systems:Bridging the gap between users and systems[C]//Conference on Advances in Human-oriented & Personalized Mechanisms. Venice, Italy, 2013:48-58.
[10] Castagnos S, Brun A, Boyer A. When diversity is needed…but not expected![C]//Proc 3rd Int Conf Advances Inf Mining Manage. Lisbon, Portugal, 2013:44-50.
[11] 刘赫, 张相洪. 一种基于最大边缘相关的特征选择方法[J]. 计算机研究与发展, 2012, 49(2):354-360. Liu He, Zhang Xianghong. A feature selection method based on maximal marginal revelance[J]. Journal of Computer Research and Development, 2012, 49(2):354-360(in Chinese).
[12] Boim R, Milo T, Novgorodov S. Diversification and refinement in collaborative filtering recommender[C]// ACM International Conference on Information Knowledge Management. Glasgow, UK, 2011:739-744.
[13] Smyth B, McClave P. Similarity vs. diversity[C]//In Based Reasoning Research and Development. Vancouver, Canada, 2001:347-361.
[14] Adomavicius G, Kwon Y. Overcoming accuracy-diversity tradeoff in recommender systems:A variance-based approach[C]//Proceedings of Wits’. Paris, France, 2008.
[15] Sandoval S V. Novelty and diversity evaluation and enhancement in recommender systems[D]. Madrid:Departamento de Ingenier?-a Inform?atica, Escuela Polit?lcnica Superior, Universidad Aut?snoma, 2015.
[16] Pathak A, Patra B K. A knowledge reuse framework for improving novelty and diversity in recommendations [C]//Proceedings of the 2nd ACM IKDD Conference on Data Sciences. Bangalore, India, 2015:11-19.
[17] Vargas S. Novelty and diversity enhancement and evaluation in recommender systems[C]//International Acm Sigir Conference on Research. Golden Coast, Astralia, 2014:1281.
[18] Jiang H, Qi X, Sun H. Choice-based recommender systems:A unified approach to achieving relevancy and diversity[J]. Oper Res, 2014, 62(5):973-993.
[19] Chen L, Wu W, He L. How personality influences users’ needs for recommendation diversity?[C]//CHI’13 Extended Abstracts on Human Factors in Computing Systems. Paris, France, 2013:829-834.
[20] Tintarev N, Dennis M, Masthoff J. Adapting recommendation diversity to openness to experience:A study of human behavior[C]//User Modeling, Adaptation, and Personalization. Rome, Italy, 2013:190-202.
[21] Noia T D, Ostuni V C, Rosati J, et al. An analysis of users’ propensity toward diversity in recommendations [C]//Proceedings of the 8th ACM Conference on Recommender Systems. SiliconValley, USA, 2014:285-288.
[22] Zhang F G, Liu Y H, Xiong Q Q. A novel mass diffusion recommendation algorithm based on user’s nearest neighbors[C]//Proceedings of the International Symposium on Information Technology Convergence. Jeju Island, Korea, 2016:254-261.
[23] Vargas S, Castells P. Exploiting the diversity of user preferences for recommendation[C]//Proceedings of the 10th Conference on Open Research Areas in Information Retrieval. Paris, France, 2013:129-136.


收稿日期: 2017-08-17; 修回日期: 2018-03-30.
作者简介: 姜书浩(1980—), 男, 博士研究生, 副教授, mr_jiang1980@163.com.
通讯作者: 张立毅, zhangliyi@tjcu.edu.cn.

更新日期/Last Update: 2018-10-10