PDF下载 分享
[1]侯春萍,林洪湖.基于网格与韦泊统计特性的立体图像质量评价[J].天津大学学报(自然科学版),2018,(10):1015-1022.[doi:10.11784/tdxbz201710002]
 Hou Chunping,Lin Honghu.Stereoscopic Image Quality Assessment Based on Grid and Weibull Statistics[J].Journal of Tianjin University,2018,(10):1015-1022.[doi:10.11784/tdxbz201710002]
点击复制

基于网格与韦泊统计特性的立体图像质量评价

参考文献/References:

[1] Wang Zhou, Bovik A C, Sheikh H R, et al. Image quality assessment:From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
[2] Hamid R S, Bovik A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2):430-444.
[3] Zhang Lin, Zhang Lei, Mou Xuanqin, et al. FSIM:A feature similarity index for image quality assessment [J]. IEEE Transactions on Image Processing, 2011, 20(8):2378-2386.
[4] Wang Zhou, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment[C]//2004 the 37th IEEE Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA, 2003:1398-1402.
[5] Yue Guanghui, Hou Chunping, Gu Ke, et al. No reference image blurriness assessment with local binary patterns[J]. Journal of Visual Communication and Image Representation, 2017, 49:382-391.
[6] Yue Guanghui, Hou Chunping, Gu Ke, et al. Biologically inspired blind quality assessment of tone-mapped images[J]. IEEE Transactions on Industrial Electron-ics, 2018, 65(3):2525-2536.
[7] Yue G, Hou C, Jiang Q, et al. Blind Stereoscopic 3D image quality assessment via analysis of naturalness, structure, and binocular asymmetry[J]. Signal Processing, 2018, 150:204-214.
[8] 侯春萍, 林洪湖. 基于小波变换与结构特征的立体图像质量评价[J]. 激光与光电子学进展, 2018, 55(6):061005.
Hou Chunping, Lin Honghu. Stereoscopic image quality assessment based on wavelet transform and structure characteristics[J]. Laser and Optoelectronics Progress, 2018, 55(6):061005(in Chinese).
[9] Li Leida, Zhou Yu, Wu Jinjian, et al. GridSAR:Grid strength and regularity for robust evaluation of blocking artifacts in JPEG images[J]. Journal of Visual Communication and Image Representation, 2015, 30:153-163.
[10] Deng Chenwei, Wang Shuigen, Li Zhen, et al. Content-insensitive blind image blurriness assessment using Weibull statistics and sparse extreme learning machine[EB/OL]. https://ieeexplore.ieee.org/document/796 7621/, 2017.
[11] Yue Guanghui, Hou Chunping, Lei Jianjun, et al. Optimal region selection for stereoscopic video subtitle insertion[EB/OL]. https://ieeexplore.ieee.org/document/ 80104501/, 2017.
[12] Shao Feng, Li Kemeng, Lin Weisi, et al. Using binocular feature combination for blind quality assessment of stereoscopic images[J]. IEEE Signal Processing Letters, 2015, 22(10):1548-1551.
[13] Lin Yu-Hsun, Wu Ja-Ling. Quality assessment of stereoscopic 3D image compression by binocular integration behaviors[J]. IEEE Transactions on Image Processing, 2014, 23(4):1527-1542.
[14] Shao Feng, Chen Wanting, Lin Wenchong, et al. Simulating receptive fields of human visual cortex for 3D image quality prediction[J]. Applied Optics, 2016, 55(21):5488-5496.
[15] Shao Feng, Li Kemeng, Lin Weisi, et al. Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties[J]. IEEE Transactions on Image Processing, 2015, 24(10):2971-2983.
[16] Shao Feng, Chen Wanting, Jiang Gangyi, et al. Modeling the perceptual quality of stereoscopic images in the primary visual cortex[J]. IEEE Access, 2017, 5:15706-15716.
[17] Shao Feng, Tian Weijun, Lin Weisi, et al. Toward a blind deep quality evaluator for stereoscopic images based on monocular and binocular interactions[J]. IEEE Transactions on Image Processing, 2016, 25(5):2059-2074.
[18] Lin Yancong, Yang Jiachen, Lu Wen, et al. Quality index for stereoscopic images by jointly evaluating cyclopean amplitude and cyclopean phase[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(1):89-101.
[19] Geusebroek Jan-Mark, Arnold W. M. Smeulders. Fragmentation in the vision of scenes[C]//IEEE International Conference on Computer Vision. Tokyo, Japan, 2003:130-135.
[20] Scholte H S, Ghebreab S, Waldorp L, et al. Brain responses strongly correlate with Weibull image statistics when processing natural images[J]. Journal of Vision, 2009, 9(4):29-29.
[21] Scholkopf B, Smola A J. Learning with Kernels:Support Vector Machines, Regularization, Optimization, and Beyond[M]. Cambridge:MIT Press, 2001.
[22] Zhou Wujie, Yu Lu, Qiu Weiwei, et al. Utilizing binocular vision to facilitate completely blind 3D image quality measurement[J]. Signal Processing, 2016, 129:130-136.
[23] Oh H, Ahn S, Kim J, et al. Blind deep S3D image quality evaluation via local to global feature aggregation[J]. IEEE Transactions on Image Processing, 2017, 26(10):4923-4936.

备注/Memo

收稿日期: 2017-10-03; 修回日期: 2018-04-11.
作者简介: 侯春萍(1957—), 女, 博士, 教授, hcp@tju.edu.cn.
通讯作者: 林洪湖, linhonghu@tju.edu.cn.
基金项目: 国家自然科学基金重点国际(地区)合作研究资助项目(61520106002); 国家自然科学基金资助项目(61471262).
Supported by the Key International(Regional)Cooperative Research Program of National Natural Science Foundation of China
(No.,61520106002) and the National Natural Science Foundation of China(No.,61471262).

更新日期/Last Update: 2018-10-10