PDF下载 分享
[1]庞彦伟,李潇,梁金升,等.基于卷积神经网络的第一导联心电图心拍分类[J].天津大学学报(自然科学版),2018,(10):997-1004.[doi:10.11784/tdxbz201706078]
 Pang Yanwei,Li Xiao,Liang Jinsheng,et al.Classification of First Lead Electrocardiogram Heartbeats Based on Convolutional Neural Networks[J].Journal of Tianjin University,2018,(10):997-1004.[doi:10.11784/tdxbz201706078]
点击复制

基于卷积神经网络的第一导联心电图心拍分类

参考文献/References:

[1] Clifford G D, Azuaje F, McSharry P. Advanced Methods and Tools for ECG Data Analysis[M]. Norwood:Artech House, 2006.
[2] Luz E J S, Schwartz W R, Cámara-Chávez G, et al. ECG-based heartbeat classification for arrhythmia detection:A survey[J]. Computer Methods and Programs in Biomedicine, 2016, 127:144-164.
[3] Sayadi O, Shamsollahi M B. Multiadaptive bionic wavelet transform:Application to ECG denoising and baseline wandering reduction[J]. EURASIP Journal on Advances in Signal Processing, 2007(1):041274.
[4] Li C, Zheng C, Tai C. Detection of ECG characteristic points using wavelet transforms[J]. IEEE Transactions on Biomedical Engineering, 1995, 42(1):21-28.
[5] Martínez J P, Almeida R, Olmos S, et al. A wavelet-based ECG delineator:Evaluation on standard databases [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(4):570-581.
[6] Sayadi O, Shamsollahi M B. ECG denoising and compression using a modified extended Kalman filter structure[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(9):2240-2248.
[7] Exarchos T P, Tsipouras M G, Exarchos C P, et al. A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree[J]. Artificial Intelligence in Medicine, 2007, 40(3):187-200.
[8] Lin C C, Yang C M. Heartbeat classification using normalized RR intervals and morphological features[J]. Mathematical Problems in Engineering, 2014, 12:1-11.
[9] de Chazal P, O’Dwyer M, Reilly R B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(7):1196-1206.
[10] Minami K, Nakajima H, Toyoshima T. Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network[J]. IEEE Transactions on Biomedical Engineering, 1999, 46(2):179-185.
[11] Lin C H, Du Y C, Chen T. Adaptive wavelet network for multiple cardiac arrhythmias recognition[J]. Expert Systems with Applications, 2008, 34(4):2601-2611.
[12] Park K S, Cho B H, Lee D H, et al. Hierarchical support vector machine based heartbeat classification using higher order statistics and hermite basis function [C]//Computers in Cardiology. Bologna, Italy, 2008:229-232.
[13] Khazaee A, Ebrahimzadeh A. Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features[J]. Biomedical Signal Processing and Control, 2010, 5(4):252-263.
[14] Homaeinezhad M R, Atyabi S A, Tavakkoli E, et al. ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features[J]. Expert Systems with Applications, 2012, 39(2):2047-2058.
[15] Yu S N, Chen Y H. Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network[J]. Pattern Recognition Letters, 2007, 28(10):1142-1150.
[16] Güler ?, ?beyli E D. ECG beat classifier designed by combined neural network model[J]. Pattern Recogni-tion, 2005, 38(2):199-208.
[17] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[18] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks [C]//Advances in Neural Information Processing Systems. Lake?Tahoe, USA, 2012:1097-1105.
[19] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Nevada, USA, 2016:770-778.
[20] 金林鹏, 董军. 面向临床心电图分析的深层学习算法[J]. 中国科学:信息科学, 2015, 45(3):398-416.
Jin Linpeng, Dong Jun. Deep learning research on clinical electrocardiogram analysis[J]. Science China:Information Sciences, 2015, 45(3):398-416(in Chinese).
[21] 李慧慧, 金林鹏. 一种基于心率和深层学习的心电图分类算法[J]. 航天医学与医学工程, 2016, 29(3):189-194.
Li Huihui, Jin Linpeng. An ECG classification algorithm based on heart rate and deep learning[J]. Space Medicine & Medical Engineering, 2016, 29(3):189-194(in Chinese).
[22] Goldberger A L, Amaral L A, Glass L, et al. Physiobank, PhysioToolkit, and PhysioNet:Components of a new research resource for complex physiological signals [J]. Circulation, 2000, 101(23):220.
[23] Goldberger A L. Components of a new research resource for complex physiologic signals, PhysioBank, Physi-oToolkit, and PhysioNet, American heart association journals [J]. Circulation, 2000, 101(23):1-9.
[24] Association for the Advancement of Medical Instrumen-tation. Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algo-rithms[M]. Arlington:AAMI, 1998.
[25] Llamedo M, Martínez J P. Heartbeat classification using feature selection driven by database generalization criteria[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(3):616-625.
[26] Llamedo M, Khawaja A, Martínez J P. Analysis of 12-lead classification models for ECG classifica-tion [C]//Computing in Cardiology. Belfast, Northern Ireland, 2010:673-676.

备注/Memo

收稿日期: 2017-06-30; 修回日期: 2017-11-13.
作者简介: 庞彦伟(1976—), 男, 博士, 教授.
通讯作者: 庞彦伟, pyw@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(61472274).
Supported by the National Natural Science Foundation of China(No.,61472274).

更新日期/Last Update: 2018-10-10