PDF下载 分享
[1]李会军,严毕玉,刘晨曦,等.高Cr铁素体耐热钢高温热循环过程的组织演化规律[J].天津大学学报(自然科学版),2018,(07):729-734.[doi:10.11784/tdxbz201706066]
 Li Huijun,Yan Biyu,Liu Chenxi,et al.Microstructure Evolution of High Cr Ferritic Heat-Resistant Steel in High Temperature Thermal Cycle[J].Journal of Tianjin University,2018,(07):729-734.[doi:10.11784/tdxbz201706066]
点击复制

高Cr铁素体耐热钢高温热循环过程的组织演化规律

参考文献/References:

[1] Klueh R L. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors [J]. International Materials Reviews, 2005, 50(5):287-310.
[2] 孙述利, 张敏刚, 何文武, 等. 9% Cr耐热钢的高温热变形机制及组织演变[J]. 材料工程, 2010(12):19-23.
Sun Shuli, Zhang Mingang, He Wenwu, et al. Hot deformation mechanism and microstructure evolution of 9% Cr heat resistant steel[J]. Journal of Materials Engineering, 2010(12):19-23(in Chinese).
[3] 宁保群, 刘永长, 乔志霞, 等. T91 铁素体耐热钢过冷奥氏体转变过程中临界冷却速度的研究[J]. 材料工程, 2007(9):9-13.
Ning Baoqun, Liu Yongchang, Qiao Zhixia, et al. Determination of critical cooling rates in undercooled austenite transformation process of T91 ferritic heat-resistant steel[J]. Journal of Materials Engineering, 2007(9):9-13(in Chinese).
[4] Liu C X, Liu Y C, Zhang D T, et al. Kinetics of isochronal austenization in modified high Cr ferritic heat-resistant steel[J]. Applied Physics A, 2011, 105(4):949-957.
[5] 乔亚霞, 武英利, 徐联勇. 9%~12% Cr高等级耐热钢的Ⅳ型开裂研究进展[J]. 中国电力, 2008, 41(5):33-36.
Qiao Yaxia, Wu Yingli, Xu Lianyong. Analysis of the type Ⅳ cracking in advanced 9%—12% Cr heat-resisting steel[J]. Electric Power, 2008, 41(5):33-36(in Chinese).
[6] Fujibayashi S, Eedo T. Creep behavior at the intercritical HAZ of a 1.25 Cr-0.5 Mo steel[J]. ISIJ Interna-tional, 2002, 42(11):1309-1317.
[7] Francis J A, Mazur W, Bhadeshia H, et al. Review type Ⅳ cracking in ferritic power plant steels[J]. Materials Science and Technology, 2006, 22(12):1387-1395.
[8] Albert S K, Matsui M, Watanabe T, et al. Microstructural investigations on type Ⅳ cracking in a high Cr steel[J]. ISIJ International, 2002, 42(12):1497-1504.
[9] Watanabe T, Tabuchi M, Yamazaki M, et al. Creep damage evaluation of 9Cr-1Mo-V-Nb steel welded joints showing Type Ⅳ fracture[J]. International Journal of Pressure Vessels and Piping, 2006, 83(1):63-71.
[10] Tabuchi M, Ha J, Hongo H, et al. Experimental and numerical study on the relationship between creep crack growth properties and fracture mechanisms[J]. Metallurgical and Materials Transactions A, 2004, 35(6):1757-1764.
[11] Hald J. Microstructure and long-term creep properties of 9%—12% Cr steels[J]. International Journal of Pressure Vessels and Piping, 2008, 85(1):30-37.
[12] Maruyama K, Sawada K, Koike J. Strengthening mechanisms of creep resistant tempered martensitic steel [J]. ISIJ International, 2001, 41(6):641-653.
[13] Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants[J]. Science and Technology of Advanced Materials, 2008, 9(1):013002.
[14] Hald J, Korcakova L. Precipitate stability in creep resistant ferritic steels-experimental investigations and modelling[J]. ISIJ International, 2003, 43(3):420-427.
[15] Strang A, Vodarek V. Z phase formation in martensitic 12CrMoVNb steel[J]. Materials Science Journal, 1996, 12(7):552-556.
[16] 高惠临, 董玉华, Hendricks R W. 超低碳QT钢焊接二次热循环的组织转变与局部脆化[J]. 金属学报, 2001, 37(1):34-38.
Gao Huilin, Dong Yuhua, Hendricks R W. Microstructure transformation and brittlement of a ultra-low carbon QT steel during double welding thermal cycle [J]. Acta Metallurgica Sinica, 2001, 37(1):34-38(in Chinese).
[17] Latha S, Laha K, Rao K B S, et al. Comparative study of tensile flow parameters in forged and rolled 9Cr-1Mo steel[J]. International Journal of Pressure Vessels and Piping, 1996, 67(2):155-160.
[18] Gao Q Z, Liu Y C, Di X J, et al. Influence of austenitization temperature on phase transformation features of modified high Cr ferritic heat-resistant steel[J]. Nuclear Engineering and Design, 2013, 256(3):148-152.
[19] Morito S, Saito H, Ogawa T, et al. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels[J]. ISIJ International, 2005, 45(1):91-94.
[20] Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels [J]. Materials Science and Engineering A, 2006, 438(1):237-240.
[21] Yan B Y, Liu Y C, Wang Z J, et al. The effect of precipitate evolution on austenite grain growth in RAFM steel[J]. Materials, 2017, 10(9):1017-1027.
[22] Schino A D, Kenny J M. Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel[J]. Materials Letters, 2003, 57(12):1830-1834.

备注/Memo

收稿日期: 2017-06-27; 修回日期: 2017-09-30.
作者简介: 李会军(1963—), 男, 博士, 教授, huijun@uow.edu.au.
通讯作者: 刘晨曦, cxliutju@163.com.
基金项目: 国家磁约束核聚变能源研究专项(2015GB119001); 国家自然科学基金资助项目(51501126).
Supported by the National Magnetic Confinement Fusion Energy Research Program(No.,2015GB119001)and the National Natural Science Foundation of China(No.,51501126).

更新日期/Last Update: 2018-07-10