|本期目录/Table of Contents|

[1]赵连玉,卢燕超,刘振忠,等.铝合金盒体焊接残余应力及变形分析[J].天津大学学报(自然科学版),2018,(05):483-490.[doi:10.11784/tdxbz201707050]
 Zhao Lianyu,Lu Yanchao,Liu Zhenzhong,et al.Analysis of Residual Stress and Deformation of Aluminum Alloy Box Welding[J].Journal of Tianjin University,2018,(05):483-490.[doi:10.11784/tdxbz201707050]
点击复制

铝合金盒体焊接残余应力及变形分析()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年05
页码:
483-490
栏目:
论文
出版日期:
2018-05-15

文章信息/Info

Title:
Analysis of Residual Stress and Deformation of Aluminum Alloy Box Welding
文章编号:
0493-2137(2018)05-0483-08
作者:
赵连玉 卢燕超 刘振忠 张伯荣 曹元 李俊伟
天津市先进机电系统设计与智能控制重点实验室,天津 300384
Author(s):
Zhao Lianyu Lu Yanchao Liu Zhenzhong Zhang Borong Cao Yuan Li Junwei
Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin 300384, China
关键词:
铝合金 焊接电流 应力场 温度场
Keywords:
aluminum alloy welding current stress fields temperature fields
分类号:
TGl46.2
DOI:
10.11784/tdxbz201707050
文献标志码:
A
摘要:
针对铝合金盒体焊接力学性能研究的欠缺, 通过模拟铝盒焊接成型过程研究铝盒焊接后残余应力及变形的变化规律.建立三维有限元模型模拟铝盒在焊接过程中的应力场, 采用双椭球热源模型模拟焊接过程中的温度场.通过双椭球热源模型电流的变化模拟焊接过程中焊接电流对铝盒焊接的影响.仿真实验采用6种铝盒尺寸模型模拟铝盒尺寸形状的多样性.仿真实验结果表明:铝盒焊接残余应力集中在开口处角点上, 变形在焊缝后半位置处, 铝盒沿4条侧边依次焊接后, 第2条焊缝对应的铝盒顶点等效塑性应变最大且随电流的增大而增大, 第4条焊缝对应的铝盒顶点最大主应力最大而受电流影响较小, 铝盒总体尺寸变化随电流的增大而增大, 实验铝盒厚0.8 mm时, 最大变形量近5 mm.
Abstract:
To fill the lack of research on mechanical properties of aluminum alloy box welding,the change rule of residual stress and deformation of aluminum alloy box after welding was investigated by simulating the welding process of aluminum alloy box. A three-dimensional finite element model was developed to simulate the stress fields of the aluminum alloy box and a double-ellipsoidal volumetric model was developed to simulate the temperature fields of the aluminum alloy box during the welding process. The effect of welding current on the aluminum alloy box welding was simulated by changing the current of double-ellipsoidal volumetric model. In the simulation experiment,six kinds of aluminum alloy box size models were used to simulate the diversity of the size of aluminum alloy box. The simulation experiment results show that aluminum alloy box welding residual stress concentrates in the opening corner and deformation centers around the second half of the weld. The equivalent plastic strain of the aluminum alloy box vertex corresponding to the second weld is the largest and increases with the increase of current,while the maximum principal stress of the aluminum alloy box vertex corresponding to the fourth weld is the largest and is less affected by current after aluminum alloy box is welded along four sides in turn. Aluminum alloy box overall dimensions increase with the increasing of current,and the maximum deformation value is close to 5 mm when the aluminum alloy box thickness is 0.8 mm.

参考文献/References:

[1] 王岩, 汤小红. 铝合金焊接应力与变形数值分析综述[J]. 焊接技术, 2012, 41(1):1-4.
Wang Yan, Tang Xiaohong. Numerical analysis of welding stress and deformation of aluminum alloy[J]. Welding Technology, 2012, 41(1):1-4(in Chinese).
[2] 李军, 张文锋, 郑岩松, 等. 铝合金薄板焊件纵向塑性应变场的数值模拟[J]. 焊接学报, 2013, 34(1):4-8, 113.
Li Jun, Zhang Wenfeng, Zheng Yansong, et al. Numerical simulation of longitudinal plastic strain field of aluminum alloy sheet weldment[J]. Transactions of the China Welding Institution, 2013, 34(1):4-8, 113(in Chinese).
[3] Yi Jie, Cao Shufen, Li Luoxing, et al. Effect of welding current on morphology and microstructure of Al alloy T-joint in double-pulsed MIG welding[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10):3204-3211.
[4] 梁伟, 郭科峰, 龚毅, 等. 考虑铝合金接头软化的焊接变形及残余应力预测方法[J]. 焊接学报, 2017, 38(5):58-62, 131.
Liang Wei, Guo Kefeng, Gong Yi, et al. Prediction method of welding deformation and residual stress considering softening of aluminum alloy joint[J]. Transactions of the China Welding Institution, 2017, 38(5):58-62, 131(in Chinese).
[5] 李艳军, 吴爱萍, 刘德博, 等. 2219铝合金VPTIG焊接残余应力的数值分析[J]. 清华大学学报:自然科学版, 2016, 56(10):1037-1041, 1046.
Li Yanjun, Wu Aiping, Liu Debo, et al. Numerical analysis of residual stress in VPTIG welding of 2219 aluminum alloy[J]. Journal of Tsinghua University:Science and Technology, 2016, 56(10):1037-1041, 1046(in Chinese).
[6] 魏敬丹, 张天宇, 张景超, 等. 铝合金激光拼焊应力场数值模拟[J]. 热加工工艺, 2013, 42(15):173-175.
Wei Jingdan, Zhang Tianyu, Zhang Jingchao, et al. Numerical simulation of stress field in laser tailor welded blanks of aluminum alloy[J]. Hot Working Technology, 2013, 42(15):173-175(in Chinese).
[7] 张洁, 武鹏伟, 张东启, 等. 铝合金薄壁箱体焊接应力有限元模拟[J]. 热加工工艺, 2013, 42(3):203-205.
Zhang Jie, Wu Pengwei, Zhang Dongqi, et al. Finite element simulation of welding stress of aluminum alloy thin wall box[J]. Hot Working Technology, 2013, 42(3):203-205(in Chinese).
[8] 叶延洪, 何静, 蔡建鹏, 等. 6061-T651铝合金薄板接头的焊接变形[J]. 中国有色金属学报, 2014, 24(10):2435-2442.
Ye Yanhong, He Jing, Cai Jianpeng, et al. Welding deformation of 6061-T651 aluminum alloy sheet joint [J]. The Chinese Journal of Nonferrous Metals, 2014, 24(10):2435-2442(in Chinese).
[9] Zhang J, Zhang G, Zhao H, et al. 3D-FEM numerical simulation of welding stress in thin aluminum alloy plate [J]. Transactions of the China Welding Institution, 2007, 28(6):5-9.
[10] Pan Q, Song W, Shao C, et al. The experimental research on residual stress regulation based on high-energy acoustic wave[C]//2017 IEEE International Conference on Mechatronics and Automation(ICMA). Takamatsu, Japan, 2017:888-892.
[11] 孙汝剑, 朱颖, 李刘合, 等. 激光冲击强化对电弧增材2319铝合金微观组织及残余应力的影响[J]. 激光与光电子学进展, 2018(1):011402.
Sun Rujian, Zhu Ying, Li Liuhe, et al. Effect of laser shock processing on Microstructure and residual stress of 2319 aluminum alloy with arc added material[J]. Laser & Optoelectronics Progress, 2018(1):011402(in Chinese).
[12] 易杰. 铝合金双脉冲MIG焊接过程中焊缝组织和性能研究[D]. 长沙:湖南大学机械与运载工程学院, 2015.
Yi Jie. The Study of Mechanical Property and Microstructure Evolution of Al Alloy Weld in Double-Pulsed MIG Welding[D]. Changsha:Mechanical and Vehicle Engineering, Hunan University, 2015(in Chinese).
[13] Nguyen V N, Nguyen Q M, Huang S C. Study computational simulation and experimental of Tee-joint by visual-weld software and Tungsten Inert gas welding process[C]//2016 International Conference on Advanced Materials for Science and Engineering(ICAMSE). Tainan, China, 2016:151-154.
[14] 张津, 计鹏飞, 周俊. 基于SWRXD的5083/6082异种铝合金搅拌摩擦焊接头的残余应力分布规律[J]. 焊接学报, 2016, 37(10):41-45, 131.
Zhang Jin, Ji Pengfei, Zhou Jun. Residual stress distribution of friction stir welded joint of dissimilar aluminum alloy 5083/6082 based on SWRXD[J]. Transactions of the China Welding Institution, 2016, 37(10):41-45, 131(in Chinese).
[15] 陈健, 吕林, 方锴. 超声冲击改善6061铝合金焊接残余应力的数值模拟[J]. 焊接学报, 2013, 34(12):88-92.
Chen Jian, Lü Lin, Fang Kai. Numerical simulation of welding residual stress improvement of 6061 aluminum alloy by ultrasonic impact[J]. Transactions of the China
Welding Institution, 2013, 34(12):88-92(in Chinese).
[16] Yao C, Du Y. Peening surface integrity of different milling conditions for high strength aluminum alloy 7055[C]//Proceedings of the 2014 International Conference on Innovative Design and Manufacturing(ICIDM). Montreal, Canada, 2014:300-304.
[17] 黄治冶, 陈芙蓉. 机械喷丸对7A52铝合金焊接接头残余应力改善的有限元模拟[J]. 焊接学报, 2014, 35(3):35-40.
Huang Zhiye, Chen Furong. Finite element simulation of residual stress improvement of 7A52 aluminum alloy welded joint by mechanical shot peening[J]. Transactions of the China Welding Institution, 2014, 35(3):35-40(in Chinese).

相似文献/References:

[1]程方杰,单平,廉金瑞,等. 铝合金连续点焊时电极烧损与焊点表面质量的变化规律[J].天津大学学报(自然科学版),2003,(06):753.

备注/Memo

备注/Memo:
收稿日期: 2017-07-13; 修回日期: 2017-11-28.
作者简介: 赵连玉(1963—), 男, 博士, 教授.
通讯作者: 刘振忠, 13512903589@139.com.
基金项目: 天津市科技计划项目(16ZXZNGX00090).
Supported by the Project of Tianjin S&T Program(No.16ZXZNGX00090).
更新日期/Last Update: 2018-05-10