|本期目录/Table of Contents|

[1]陈金龙,尹承振,孙翠茹.用于二维分布残余应力场测量的渐进裂纹柔度法[J].天津大学学报(自然科学版),2018,(05):475-482.[doi:10.11784/tdxbz201705012]
 Chen Jinlong,Yin Chengzhen,Sun Cuiru.Incremental Slitting Method for Measurement of Two-Dimensional Mapping of Residual Stress Field[J].Journal of Tianjin University,2018,(05):475-482.[doi:10.11784/tdxbz201705012]
点击复制

用于二维分布残余应力场测量的渐进裂纹柔度法()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年05
页码:
475-482
栏目:
论文
出版日期:
2018-05-15

文章信息/Info

Title:
Incremental Slitting Method for Measurement of Two-Dimensional Mapping of Residual Stress Field
文章编号:
0493-2137(2018)05-0475-08
作者:
陈金龙12 尹承振1 孙翠茹12
1. 天津大学机械工程学院,天津 300350; 2. 天津市现代工程力学重点实验室,天津 300350
Author(s):
Chen Jinlong12 Yin Chengzhen1 Sun Cuiru12
1.School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
2.Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300350, China
关键词:
二维分布残余应力场 渐进裂纹柔度法 反问题分析 有限元仿真
Keywords:
two-dimensional mapping of residual stress incremental slitting method inverse problem analysis finite element simulation.
分类号:
TG404
DOI:
10.11784/tdxbz201705012
文献标志码:
A
摘要:
基于传统裂纹柔度法, 提出了一种改进的残余应力测量方法——渐进裂纹柔度法.与传统方法只能获得沿厚度方向一维分布的残余应力不同, 该方法可以获得工件横截面内二维分布残余应力场.建立了该方法的理论模型, 并对二元基函数的选取、渐进裂纹柔度函数的计算以及待定系数方程的求解方法进行了阐述.通过仿真实验用该渐进裂纹柔度法测量了给定二维分布残余应力场.仿真测量结果与给定残余应力场的大部分区域相对误差小于5%, 只在边缘部分误差较高.通过模拟研究多种应变测量误差的影响, 证明了该方法具有较好的鲁棒性及准确性.渐进裂纹柔度法由于能测量二维分布残余应力场, 应用范围较传统方法更为广泛, 为残余应力测量提供了新方法.
Abstract:
Incremental slitting method,an improved measurement method of residual stress,was proposed based on the traditional slitting method. Unlike the traditional method,which can only obtain the one-dimensional residual stress in the depth direction,the proposed method can map the two-dimensional distribution of the cross-sectional residual stress of an object. The theoretical model of the proposed method was built. The selection of the binary basis function,the calculation of incremental slitting method coefficient,and the solution method of the equation of undetermined coefficient were elaborated. Then a given two-dimensional mapping of residual stress field was measured by use of the proposed incremental slitting method,through finite element simulation. The results show that the relative error between the measured and the given value is less than 5% in most of the region excluding the edges where the error is relatively high. The influence of different levels of random measurement error of strain was investigated through simulation,which demonstrates the good robustness and the high accuracy of the method. The incremental slitting method has broader applications than the traditional method due to its ability for two-dimensional mapping of residual stress. It provides a novel method for residual stress measurement.

参考文献/References:

[1] 任泉庄, 黄峰, 郭正洪. 中碳淬火-配分钢中的残余应力分布[J]. 金属热处理, 2016, 41(10):1-5.
Ren Quanzhuang, Huang Feng, Guo Zhenghong. Distribution of residual stress in medium carbon quenching-partitioning steel[J]. Heat Treatment of Metals, 2016, 41(10):1-5(in Chinese).
[2] 李霄, 熊庆人, 石凯, 等. 焊管残余应力研究进展及展望[J]. 焊管, 2009, 32(7):12-17.
Li Xiao, Xiong Qingren, Shi Kai, et al. Research progress and prospect of residual stress in welded pipe[J]. Welded Pipe and Tube, 2009, 32(7):12-17(in Chinese).
[3] Xu W, Liu J, Zhu H. Analysis of residual stresses in thick aluminum friction stir welded butt joints[J]. Materials & Design, 2011, 32(4):2000-2005.
[4] Woo W, An G B, Kingston E J, et al. Through-thickness distributions of residual stresses in two extreme heat-input thick welds:A neutron diffraction, contour method and deep hole drilling study[J]. Acta Materialia, 2013, 61(10):3564-3574.
[5] Liu C, Yi X. Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method[J]. Materials & Design, 2013, 46:366-371.
[6] 杨树贵. 关于焊接钢管残余应力的思考[J]. 焊管, 1998, 21(2):12-16.
Yang Shugui. The residual stress in welded pipes[J]. Welded Pipe and Tube, 1998, 21(2):12-16(in Chinese).
[7] 杨峰, 石端虎, 陆兴华, 等. 2205不锈钢摩擦焊接头组织及残余应力分布[J]. 金属热处理, 2016, 41(12):38-41.
Yang Feng, Shi Duanhu, Lu Xinghua, et al. Microstructure and residual stress distribution of friction welding joint of 2205 duplex stainless steel[J]. Heat Treatment of Metals, 2016, 41(12):38-41(in Chinese).
[8] 蒋文春, Woo Wanchuck, 王炳英, 等. 中子衍射和有限元法研究不锈钢复合板补焊残余应力[J]. 金属学报, 2012(12):1525-1529.
Jiang Wenchun, Woo Wanchuck, Wang Bingying, et al. A study of residual stress in the repair weld of stainless steel clad plate by neutron diffraction measurement and finite element method[J]. Acta Metallurgica Sinica, 2012(12):1525-1529(in Chinese).
[9] 税正伟. 焊后热处理对L245NCS微合金钢焊接残余应力的影响[J]. 金属热处理, 2012, 37(7):35-37.
Shui Zhengwei. Effect of postweld heat treatment on welding residual stress of L245NCS microalloy steel[J]. Heat Treatment of Metals, 2012, 37(7):35-37(in Chinese).
[10] Olson M D, Hill M R, Clausen B, et al. Residual stress measurements in dissimilar weld metal[J]. Experimental Mechanics, 2015, 55(6):1093-1103.
[11] Liu C, Dong C L. Internal residual stress measurement on linear friction welding of titanium alloy plates with contour method[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(5):1387-1392.
[12] Nervi S, Szabó B A. On the estimation of residual stresses by the crack compliance method[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(37/38/39/40):3577-3584.
[13] 徐小严, 吕玉廷, 张荻, 等. 中子衍射测量残余应力研究进展[J]. 材料导报, 2015(9):117-122.
Xu Xiaoyan, Lü Yuting, Zhang Di, et al. Measuring residual stress by neutron diffraction[J]. Materials Review, 2015(9):117-122(in Chinese).
[14] Schajer G S, Ruud C O. Practical Residual Stress Measurement Methods[M]. Chichester:Wiley, 2013.
[15] Schajer G S, Prime M B. Use of inverse solutions for residual stress measurements[J]. Journal of Engineering Materials and Technology, 2006, 128(3):375-382.
[16] Pachpatte B G. Multidimensional Integral Equations and Inequalities[M]. Paris:Atlantis Press, 2011.
[17] Farrahi G H, Faghidian S A, Smith D J. An inverse method for reconstruction of the residual stress field in welded plates[J]. Journal of Pressure Vessel Technol-ogy, 2010, 132(6):61205.
[18] 王仁宏. 数值逼近[M]. 北京:高等教育出版社, 2012.
Wang Renhong. Numerical Approximation[M]. Beijing:Higher Education Press, 2012(in Chinese).
[19] 王振杰. 测量中不适定问题的正则化解法[M]. 北京:科学出版社, 2006.
Wang Zhenjie. Regularized Methods for Ill-Posed Problems in the Measurement[M]. Beijing:Science Press, 2006(in Chinese).
[20] 唐志涛. 航空铝合金残余应力及切削加工变形研究[D]. 济南:山东大学机械工程学院, 2008.
Tang Zhitao. Residual Stresses and Deformations of Aerospace Aluminum Alloy in Machining[D]. Jinan:School of Mechanical Engineering, Shandong Univer-sity, 2008(in Chinese).

备注/Memo

备注/Memo:
收稿日期: 2017-05-05; 修回日期: 2017-08-30.
作者简介: 陈金龙(1966—), 男, 博士, 教授, jlchen66@tju.edu.cn.
通讯作者: 孙翠茹, carry_sun@tju.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2014CB046805).
Supported by the National Basic Research Program of China(No.,2014CB046805).
更新日期/Last Update: 2018-05-10