|本期目录/Table of Contents|

[1]谢胜龙,梅江平,刘海涛.足底驱动型下肢康复机器人的运动学建模与轨迹跟踪控制研究[J].天津大学学报(自然科学版),2018,(05):443-452.[doi:10.11784/tdxbz201707005]
 Xie Shenglong,Mei Jiangping,Liu Haitao.Kinematics Modeling and Simulation of Trajectory Tracking Control of a Foot-Plate-Based Lower-Limb Rehabilitation Robot[J].Journal of Tianjin University,2018,(05):443-452.[doi:10.11784/tdxbz201707005]
点击复制

足底驱动型下肢康复机器人的运动学建模与轨迹跟踪控制研究()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年05
页码:
443-452
栏目:
论文
出版日期:
2018-05-15

文章信息/Info

Title:
Kinematics Modeling and Simulation of Trajectory Tracking Control of a Foot-Plate-Based Lower-Limb Rehabilitation Robot
文章编号:
0493-2137(2018)05-0443-10
作者:
谢胜龙 梅江平 刘海涛
天津大学机构理论与装备设计教育部重点实验室,天津 300350
Author(s):
Xie Shenglong Mei Jiangping Liu Haitao
Key Laboratory of Mechanism Theory and Equipment Design, Ministry of Education, Tianjin University, Tianjin 300350, China
关键词:
足底驱动 下肢康复机器人 高速开关阀 气动人工肌肉 轨迹跟踪 关节空间控制
Keywords:
foot-plate-based drive lower-limb rehabilitation robot fast switching valve pneumatic artificial muscle trajectory tracking joint space control
分类号:
TH242
DOI:
10.11784/tdxbz201707005
文献标志码:
A
摘要:
为简单、精确地实现对一种由高速开关阀和气动人工肌肉作为驱动控制单元的足底驱动型下肢康复机器人的轨迹跟踪控制, 提出了一种基于MATLAB/Simulink的仿真控制模型.基于模块化思想, 将该机器人控制系统划分为系统输入模块、位置逆解模块、单支链驱动控制模块和位置正解模块.首先对该机器人进行结构分析, 在此基础上推导出其运动学正逆解模型, 为位置正逆解模块提供理论依据.然后, 建立人体下肢运动学模型, 带入关节角度数据得到足底运动轨迹, 在此基础上用傅里叶级数拟合得到足心和背伸/跖屈角对时间的函数表达式, 作为系统的输入模块.最后, 采用关节空间控制方法结合各子模块构造出下肢康复机器人控制仿真模型, 特别地, 采用了实验的方法验证了单支链驱动控制模块的准确性.在此基础上, 在MATLAB/Simulink模块中对所建立的系统仿真控制模型进行了仿真.结果表明, 所建立的控制模型能够精确地跟踪期望的运动轨迹, 从而验证了控制模型和控制方案的精确性和可行性, 为实现该机器人的轨迹跟踪控制提供了有效手段.
Abstract:
To simply and precisely realize the trajectory tracking control of a foot-plate-based lower-limb rehabilitation robot driven by the actuators combined by fast switching valves and pneumatic artificial muscles,a simulation control model was proposed in the environment of MATLAB/Simulink. The control system of this robot was divided into input model,inverse kinematics model,single-drive-control model and forward kinematics model based on the modular thought. Firstly,the inverse and forward kinematics formulas were developed based on the structure analysisof the robot,which is the theoretical principle of inverse and forward kinematics models. Then the lower-limb kinematical model of human was developed,the joint angle data was input into the model to get the motion trajectory of foot,and the foot center and dorsal extension/plantar flexion angle functions of time was obtained by using Fourier series method,which was used to be the input model. Finally,the simulation control model of this robot was developed by assembling the inverse and forward kinematics models,the input model and single-drive-control model based on joint space control method. Especially,the accuracy of single-drive-control model was verified via experiment. Subsequently,based on the control model the simulations of trajectory tracking control were implemented in the modelof MATLAB/Simulink. The results indicate that the proposed control model can achieve satisfactory performance and accuracy,which validates the feasibility of the proposed model and control scheme. Thus,it provides an effective approach for trajectory tracking control of this robot.

参考文献/References:

[1] 胡进, 侯增广, 陈翼雄, 等. 下肢康复机器人及其交互控制方法[J]. 自动化学报, 2014, 40(11):2377-2390.
Hu Jin, Hou Zengguang, Chen Yixiong, et al. Lower limb rehabilitation robots and interactive control methods [J]. Acta Automatica Sinica, 2014, 40(11):2377-2390(in Chinese).
[2] Dzahir M A M. Recent trends in lower-limb robotic rehabilitation orthosis:Control scheme and strategy for pneumatic muscle actuated gait trainers[J]. Robotics, 2014, 3(1):120-148.
[3] Díaz I, Gil J J, Sánchez E. Lower-limb robotic rehabilitation:literature review and challenges[J]. Journal of Robotics, 2011, 2011:759764.
[4] 李醒飞, 郑奇, 张国雄. 类人气动肌肉模型与实验研究[J]. 天津大学学报, 2005, 38(3):242-247.
Li Xingfei, Zheng Qi, Zhang Guoxiong. Mathematic model and experimental study of humanoid pneumatic muscle[J]. Journal of Tianjin University, 2005, 38(3):242-247(in Chinese).
[5] 史小华, 王洪波, 孙 利, 等. 外骨骼型下肢康复机器人结构设计与动力学分析[J]. 机械工程学报, 2014, 50(3):41-48.
Shi Xiaohua, Wang Hongbo, Sun Li, et al. Design and dynamic analysis of an exoskeletal lower limbs rehabilitation robot[J]. Journal of Mechanical Engineering, 2014, 50(3):41-48(in Chinese).
[6] Saglia J A, Tsagarakis N G, Dai J S, et al. A High-performance redundantly actuated parallel mechanism for ankle rehabilitation[J]. International Journal of Robotics Research, 2009, 28(9):1216-1227.
[7] 边辉, 刘艳辉, 梁志成, 等. 并联2-RRR/UPRR 踝关节康复机器人机构及其运动学[J]. 机器人, 2010, 32(1):6-12.
Bian Hui, Liu Yanhui, Liang Zhicheng, et al. A novel 2-RRR/UPRR robot mechanism for ankle rehabilitation and its kinematics[J]. Robot, 2010, 32(1):6-12(in Chinese).
[8] 秦涛, 张立勋. 考虑跖趾关节运动的踏板式步行康复机器人运动规划[J]. 机器人, 2014, 36(3):330-336.
Qin Tao, Zhang Lixun. Motion planning of a footpad-type walking rehabilitation robot considering motion of metatarsophalangeal joint[J]. Robot, 2014, 36(3):330-336(in Chinese).
[9] 禹润田, 方跃法, 郭盛. 绳驱动并联踝关节康复机构设计及运动性能分析[J]. 机器人, 2015, 37(1):53-62.
Yu Runtian, Fang Yuefa, Guo Sheng. Design and kinematic performance analysis of a cable-driven parallel mechanism for ankle rehabilitation[J]. Robot, 2015, 37(1):53-62(in Chinese).
[10] Jamwal P K, Xie S, Aw K C. Kinematic design optimization of a parallel ankle rehabilitation robot using modified genetic algorithm[J]. Robotics & Autonomous Systems, 2009, 57(10):1018-1027.
[11] Abbasnejad G, Yoon J, Lee H. Optimum kinematic design of a planar cable-driven parallel robot with wrench-closure gait trajectory[J]. Mechanism and Machine Theory, 2016, 99:1-18.
[12] 刘海涛, 熊坤, 贾昕胤, 等. 一种气动肌肉驱动的三自由度踝关节康复装置:105943306A[P]. 2016-09-21.
Liu Haitao, Xiong Kun, Jia Xinyin, et al. A 3-DOF Mechanism Actuated by Pneumatic Muscles for Ankle Rehabilitation:105943306A[P]. 2016-09-21(in Chinese).
[13] Xie Shenglong, Mei Jiangping, Liu Haitao, et al. Motion control of pneumatic muscle actuator using fast switching valve[C]//Proceedings of ASIAN MMS 2016 and CCMMS 2016 Mechanism and Machine Science. Guangzhou, China, 2016:1439-1451.
[14] 王企远. 步行康复训练机器人助行腿的步态规划与运动控制[D]. 上海:上海大学机电工程与自动化学院, 2011.
Wang Qiyuan. Gait Planning and Motion Control for Gait Traing Robot[D]. Shanghai:School of Mechatronic Engineering and Automation, Shanghai University, 2011(in Chinese).
[15] 姜礼杰, 王良诣, 王勇, 等. 一种混合输入并联拟人步态康复机器人的机构设计与分析[J]. 机器人, 2016, 38(4):495-503.
Jiang Lijie, Wang Liangyi, Wang Yong, et al. Mechanism design and analysis of a hybrid-input parallel rehabilitation robot with humanoid gaits[J]. Robot, 2016, 38(4):495-503(in Chinese).
[16] Pi Y, Wang X, Gu X. Synchronous tracking control of
6-DOF hydraulic parallel manipulator using cascade control method[J]. Journal of Central South University of Technology, 2011, 18:1554-1562.
[17] 施昕昕, 常思勤. 一种新型6自由度运动平台的控制研究[J]. 机械工程学报, 2014, 50(3):56-63.
Shi Xinxin, Chang Siqin. Research on control of a novel 6-DOF motion platform[J]. Journal of Mechanical Engineering, 2014, 50(3):56-63(in Chinese).
[18] 谢胜龙, 刘海涛, 梅江平, 等. 基于高速开关阀的气动人工肌肉轨迹跟踪控制建模与仿真[J]. 农业机械学报, 2017, 48(1):368-374, 385.
Xie Shenglong, Liu Haitao, Mei Jiangping, et al. Simulation of tracking control of pneumatic artificial muscle based on fast switching valves[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1):368-374, 385(in Chinese).

备注/Memo

备注/Memo:
收稿日期: 2017-07-06; 修回日期: 2017-09-21.
作者简介: 谢胜龙(1988—), 男, 博士研究生, sleepinglion@tju.edu.cn.
通讯作者: 梅江平, ppm@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(51405331).
Supported by the National Natural Science Foundation of China(No. 51405331).
更新日期/Last Update: 2018-05-10