|本期目录/Table of Contents|

[1]李冀永,万磊,黄海,等.水下机器人-机械手系统自适应抗扰控制方法[J].天津大学学报(自然科学版),2018,(04):413-421.[doi:10.11784/tdxbz201701015]
 Li Jiyong,Wan Lei,Huang Hai,et al.Adaptive Control Method of Underwater Vehicle Manipulator System Under Disturbances[J].Journal of Tianjin University,2018,(04):413-421.[doi:10.11784/tdxbz201701015]
点击复制

水下机器人-机械手系统自适应抗扰控制方法()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年04
页码:
413-421
栏目:
论文
出版日期:
2018-04-15

文章信息/Info

Title:
Adaptive Control Method of Underwater Vehicle Manipulator System Under Disturbances
文章编号:
0493-2137(2018)04-0413-09
作者:
李冀永 万磊 黄海 张国成 秦洪德
哈尔滨工程大学水下机器人技术重点实验室,哈尔滨150001
Author(s):
Li Jiyong Wan Lei Huang Hai Zhang Guocheng Qin Hongde
Department of Naval Architecture and Ocean Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
水下机器人 机械手 脐带缆 抗扰控制
Keywords:
underwater vehicle manipulator tether anti-disturbance control
分类号:
TP242.6
DOI:
10.11784/tdxbz201701015
文献标志码:
A
摘要:
针对开架式水下机器人在其作业过程中易受到脐带缆、机械手和海流等扰动影响的问题, 为减小改扰动对艇体姿态的影响, 文中对开架式水下机器人设计了一种基于模型的自适应抗扰控制方法, 并分别对脐带缆和机械手引起的扰动进行了建模分析, 具体建立了一种以全局运动学控制环和扰动力补偿项为主的自适应抗扰控制.在SY-Ⅱ开架式水下机器人平台上进行了S面控制和自适应抗扰控制的对比实验.结果表明, 脐带缆和机械手的扰动力会对水下机器人的姿态产生较大影响, 通过对扰动力的实时估算和补偿, 在定深定向、轨迹跟踪实验中, 基于模型的抗扰控制方法表现出更高的控制精度, 在姿态保持实验中, 与S面控制方法相比, 自适应抗扰控制展现了较好的鲁棒性, 系统轨迹更平稳, 具有更强的稳定性.
Abstract:
Open frame underwater vehicles tend to be affected by the disturbances caused by manipulator,tether,waves and other factors. In order to reduce the influence of disturbances,in this article a model-based adaptive anti-disturbance control(AADC)method for open frame underwater vehicles was proposed. The models of disturbances caused by manipulator and tether was analyzed,and an AADC method in details based on global dynamic control loop and disturbances compensation terms was established. Experiments carried out on SY-Ⅱ open frame underwater vehicle to compare the AADC with the S surface control show that manipulator and tether indeed caused certain disturbances on the vehicle. The AADC method shows higher control accuracy through the estimation and compensation of disturbance in deep keeping,orientation keeping and path following experiments. When it comes to the position keeping experiments while the manipulator is at work,AADC method is robust against disturbance,hence generating smoother trajectory in vehicle motion and showing better stability performance than S surface control.

参考文献/References:

[1] 徐玉如, 肖坤. 智能海洋机器人技术进展[J]. 自动化学报, 2007, 33(5):518-521.
Xu Yuru, Xiao Kun. Technology development of autonomous ocean vehicle[J]. Acta Automatica Sinica, 2007, 33(5):518-521(in Chinese).
[2] 吴家鸣, 崔寅, 邓威, 等. 控制动作下带缆遥控水下机器人的水动力特性[J]. 华南理工大学学报:自然科学版, 2012, 40(4):150-157.
Wu Jiaming, Cui Yin, Deng Wei, et al. Hydrodynamic characteristics of tethered underwater robot under control manipulations[J]. Journal of South China University of Technology:Natural Science Edition, 2012, 40(4):150-157(in Chinese).
[3] 陈巍, 魏延辉, 曾建辉, 等. 水下机器人-机械手系统控制方法综述[J]. 重庆理工大学学报:自然科学版, 2015, 29(8):116-123.
Chen Wei, Wei Yanhui, Zeng Jianhui, et al. Review of underwater vehicle manipulator system control method [J]. Journal of Chongqing University of Technology:Natural Science, 2015, 29(8):116-123(in Chinese).
[4] Bian X, Qu Y, Yan Z, et al. Nonlinear feedback control for trajectory tracking of an unmanned underwater vehicle[C]//IEEE International Conference on Information and Automation(ICIA 2010). Harbin, China, 2010:1387-1392.
[5] Bagheri A, Karimi T, Amanifard N. Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controllers[J]. Applied Soft Computing Journal, 2010, 10(3):908-918.
[6] Antonelli G, Caccavale F, Chiaverini S. Adaptive tracking control of underwater vehicle-manipulator systems based on the virtual decomposition approach[J]. IEEE Transactions on Robotics and Automation, 2004, 20(3):594-602.
[7] 郭莹. 水下自主作业系统协调控制技术研究[D]. 武汉:华中科技大学船舶与海洋工程学院, 2008.
Guo Ying. Coordinated Control Technology of Underwater Vehicle-Manipulator System[D]. Wuhan:School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, 2008(in Chinese).
[8] 彭生全. 水下机器人-机械手系统运动规划与控制技术研究[D]. 哈尔滨:哈尔滨工程大学机械与电气工程学院, 2012.
Peng Shengquan. Research on the Motion Planning and Control for Underwater Vehicle-Manipulator System [D]. Harbin:College of Mechanical and Electrical Engineering, Harbin Engineering University, 2012(in Chinese).
[9] Ismail Z H, Dunnigan M W. Redundancy resolution for underwater vehicle-manipulator systems with congruent gravity and buoyancy loading optimization[C]//Pro-ceedings of the 2009 IEEE International Conference on Robotics and Biomimetics. Guilin, China, 2009:1393-1399.
[10] Han Jonghui, Chung Wan Kyun. Active use of restoring moments for motion control of an underwater vehicle-manipulator system[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1):100-109.
[11] James C K, Yang Q J, Jonathan C H. Nonlinear dynamic model-based state estimators for underwater navigation of remotely operated vehicles[J]. IEEE Transactions on Control Systems Technology, 2014, 22(5):1845-1854.
[12] Sairam P, Bradley B. Dynamics modeling and control of a variable length remotely operated vehicle tether[J]. Oceans, 2005, 2(2005):1255-1262.
[13] Mario A J, Jorge L B. Guidance of underwater vehicles with cable tug perturbations under fixed and adaptive control systems[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4):579-598.
[14] 唐旭东, 庞永杰, 李晔. 基于S 模型的水下机器人改进人工免疫控制器[J]. 大连海事大学学报, 2008, 34(1):49-53.
Tang Xudong, Pang Yongjie, Li Ye. S model-based improved artificial immune controller for autonomous underwater vehicle[J]. Journal of Dalian Maritime University, 2008, 34(1):49-53(in Chinese).
[15] Montano A, Restelli M, Sacco R. Numerical simulation of tethered buoy dynamics using mixed finite elements computer methods[J]. Applied Mechanics and Engineering, 2007, 196(41/42/43/44):4117-4129.
[16] Tsai Lung-wen. Robot Analysis[M]. New York:Wiley, 1999.

备注/Memo

备注/Memo:
收稿日期: 2017-01-14; 修回日期: 2017-11-10.
作者简介: 李冀永(1992—), 男, 博士研究生, lijiyong@hrbeu.edu.cn.
通讯作者: 黄海, huanghai@hrbeu.edu.cn.
基金项目: 国家自然科学基金资助项目(61633009, 51579053, 51209050).
Supported by the National Natural Science Foundation of China(No.,61633009, No.,51579053 and No.,51209050).
更新日期/Last Update: 2018-04-10