|本期目录/Table of Contents|

[1]徐英,姚浩楠,曹忠林,等.热式质量流量传感器混合对流传热模型[J].天津大学学报(自然科学版),2018,(04):406-412.[doi:10.11784/tdxbz201707065]
 Xu Ying,Yao Haonan,Cao Zhonglin,et al.Heat Transfer Model of Mixed Convection for Thermal Mass Flow Sensor[J].Journal of Tianjin University,2018,(04):406-412.[doi:10.11784/tdxbz201707065]
点击复制

热式质量流量传感器混合对流传热模型()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年04
页码:
406-412
栏目:
论文
出版日期:
2018-04-15

文章信息/Info

Title:
Heat Transfer Model of Mixed Convection for Thermal Mass Flow Sensor
文章编号:
0493-2137(2018)04-0406-07
作者:
徐英12 姚浩楠12 曹忠林3 张涛12 段春剑12
1. 天津大学电气自动化与信息工程学院,天津 300072;2. 天津市过程检测与控制重点实验室,天津 300072;3. 中国石油长城钻探工程公司四川页岩气项目部,内江 642450
Author(s):
Xu Ying12 Yao Haonan12 Cao Zhonglin3 Zhang Tao12 Duan Chunjian12
1.School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
2.Tianjin Key Laboratory of Process Measurement and Control, Tianjin 300072, China
3. Sichuan Shale Gas Project Department of CNPC Greatwall Drilling Compa
关键词:
King定律 自然对流 混合对流 热式气体质量流量传感器 指数 对流强度比
Keywords:
King’s law free convection mixed convection thermal gas mass flow sensor exponent n convection intensity ratio
分类号:
TH814
DOI:
10.11784/tdxbz201707065
文献标志码:
A
摘要:
考虑自然对流的影响, 改进King定律, 深入研究热式气体质量流量传感器的混合对流传热模型.针对恒流式热式气体质量流量传感器原理样机, 分析不同流速下自然对流与强迫对流的关系.从自然对流的角度进行分析, 指出King定律模型中指数与对流强度比之间的变化规律.在天津大学常压气体流量标准实验装置上进行实验研究, 实验管道管径为200 mm, 流速范围为0.03~23.05 m/s.结合实验数据, 建立指数的数学模型, 改进King定律模型, 在低流速范围(0.03~1.00 m/s)内, 与原King定律模型比较, 质量流量测量精度有较大提高, 平均误差从69.27% 减小到1.15% .
Abstract:
Considering the impact of free convection,the King’s law was refined and a modified heat transfer model of mixed convection for thermal gas mass flow sensor was further studied. According to the prototype of thermal gas mass flow sensor with constant current,the relationship between free convection and forced convection over a wide velocity range was discussed. In the light of the influence of free convection,the relationship between the exponent  of King’s model and the convection intensity ratio  was observed. The calibration was carried out on the standard device of gas flow under normal pressure in Tianjin University. The experimental pipe diameter was 200 mm and the flow rate was 0.03—23.05 m/s. Based on the experimental data,the mathematical model of exponent  was established and the King’s model was improved. In the range of low flow rate(0.03—1.00 m/s),the accuracy of mass flow measurement was greatly improved compared with the results of the original King’s model. The mean error of 69.27% was reduced to 1.15% .

参考文献/References:

[1] 赵伟国. 热式气体质量流量测量方法及系统研究[D]. 杭州:浙江大学控制科学与工程学系, 2009.
Zhao Weiguo. Measurement Technology and System Design of the Thermal Gas Flow[D]. Hangzhou:Department of Control Science and Engineering, Zhejiang University, 2009(in Chinese).
[2] Bruun H H, Khan M A, Alkayiem H H, et al. Velocity calibration relationships for hot-wire anemometry[J]. Journal of Physics E Scientific Instruments, 1988, 21(2):225.
[3] King L V. On the convection of heat from small cylinders in a stream of fluid:Determination of the convection constants of small platinum wires with applications to hot-wire anemometry[J]. Philosophical Transactions of the Royal Society of London, 1914, 214(90):373-432.
[4] Guellouz M S, Tavoularis S. A simple pendulum technique for the calibration of hot-wire anemometers over low-velocity ranges[J]. Experiments in Fluids, 1995, 18(3):199-203.
[5] Al-Garni A M. Low speed calibration of hot-wire anemometers[J]. Flow Measurement & Instrumentation, 2007, 18(2):95-98.
[6] Collis D C, Williams M J. Two-dimensional convection from heated wires at low Reynolds numbers[J]. Journal of Fluid Mechanics, 1959, 6(3):357-384.
[7] ?zahi E, ?arp?nl?oglu M ?, Gündogdu M Y. Simple methods for low speed calibration of hot-wire anemometers[J]. Flow Measurement & Instrumentation, 2010, 21(2):166-170.
[8] Zhang H, Li Y, Zhong M, et al. A novel soft intelligent calibrator for low-velocity hot bulb anemometers [C]// IEEE International Conference on Advanced Intelligent Mechatronics. Hong Kong, China, 2015:1597-1602.
[9] 韩建, 黄颖, 牟海维, 等. 小流量热式气体流量的数值模拟研究[J]. 自动化仪表, 2016, 37(11):1-3.
Han Jian, Huang Ying, Mou Haiwei, et al. Study on numerical simulation of the small thermal gas mass flow[J]. Automation Instrumentation, 2016, 37(11):1-3(in Chinese).
[10] 徐英, 姚云飞, 张涛, 等. 局部内热源热式传感器等效换热面积的影响[J]. 天津大学学报:自然科学与工程技术版, 2017, 50(5):483-490.
Xu Ying, Yao Yunfei, Zhang Tao, et al. Research on effect from equivalent heat exchange area of thermal sensor containing local internal heat source[J]. Journal of Tianjin University:Science and Technology, 2017, 50(5):483-490(in Chinese).
[11] Churchill S W, Bernstein M. A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow[J]. Journal of Heat Transfer, 1977, 99(2):300-306.
[12] 张涛, 王娇娇, 徐英, 等. 利用热式传感器测量
环状流湿气含率[J]. 天津大学学报:自然科学与工程技术版, 2016, 49(11):1127-1131.
Zhang Tao, Wang Jiaojiao, Xu Ying, et al. Measurement of void fraction in wet gas with a new thermal sensor[J]. Journal of Tianjin University:Science and Technology, 2016, 49(11):1127-1131(in Chinese).
[13] Yuan C, Xu Y, Zhang T, et al. Experimental investigation of the phase fraction of wet gas based on convective heat transfer[J]. Applied Thermal Engineering, 2016, 110:102-110.
[14] Jiang W, Zhang T, Wang H, et al. Sheathed probe thermal gas mass flow meter heat transfer analysis[J]. Flow Measurement and Instrumentation, 2016, 47:83-89.
[15] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京:高等教育出版社, 2006.
Yang Shiming, Tao Wenquan. Heat Transfer [M]. 4th ed. Beijing:Higher Education Press, 2006(in Chinese).
[16] 张世荣. 热式气体质量流量测量及补偿算法研究[D]. 武汉:华中科技大学控制科学与工程系, 2007.
Zhang Shirong. Research on Thermal Gas Mass Flow Meter and Compensation Arithmetics[D]. Wuhan:Department of Control Science and Engineering, Huazhong University of Science & Technology, 2007(in Chinese).
[17] 李雯. 热式质量流量计的设计[D]. 杭州:浙江大学信息科学与工程学院, 2007.
Li Wen. Design of Thermal Mass Flowmeter[D]. Hangzhou:School of Information Science and Engineering, Zhejiang University, 2007(in Chinese).
[18] 刘明侯, Chan T L, 陈义良. 浮力对混合对流流动及换热特性的影响[J]. 力学学报, 2004, 36(3):336-341.
Liu Minghou, Chan T L, Chen Yiliang. Buoyancy effects on mixed convection flow and heat transfer[J]. Journal of Mechanics, 2004, 36(3):336-341(in Chinese).

备注/Memo

备注/Memo:
收稿日期: 2017-07-22; 修回日期: 2017-11-07.
作者简介: 徐英(1970—), 女, 博士, 教授.
通讯作者: 徐英, xuying@tju.edu.cn.
更新日期/Last Update: 2018-04-10