|本期目录/Table of Contents|

[1]唐韶坤,孙丽伟,李书奕.超声浸渍法制备功能化离子液体-介孔氧化铝复合新材料[J].天津大学学报(自然科学版),2018,(04):395-400.[doi:10.11784/tdxbz201704031]
 Tang Shaokun,Sun Liwei,Li Shuyi.Synthesis of Functionalized Ionic Liquid-Mesoporous Alumina Composite Materials with Ultrasonic Impregnation[J].Journal of Tianjin University,2018,(04):395-400.[doi:10.11784/tdxbz201704031]
点击复制

超声浸渍法制备功能化离子液体-介孔氧化铝复合新材料()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年04
页码:
395-400
栏目:
论文
出版日期:
2018-04-15

文章信息/Info

Title:
Synthesis of Functionalized Ionic Liquid-Mesoporous Alumina Composite Materials with Ultrasonic Impregnation
文章编号:
0493-2137(2018)04-0395-06
作者:
唐韶坤123 孙丽伟123 李书奕1
1. 天津大学化工学院,天津 300350;2. 绿色合成与转化教育部重点实验室(天津大学),天津 300350;3. 天津化学化工协同创新中心,天津 300350
Author(s):
Tang Shaokun123 Sun Liwei123 Li Shuyi1
1.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2.Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300350, China
3.Collaborative Innovation Center of Chemic
关键词:
离子液体 介孔氧化铝 固定化 超声 浸渍
Keywords:
ionic liquid mesoporous alumina immobilization ultrasonic impregnation
分类号:
TQ424.272
DOI:
10.11784/tdxbz201704031
文献标志码:
A
摘要:
针对离子液体高黏度、低传质速率的限制, 设计合成功能化离子液体-介孔氧化铝复合材料. 采用超声浸渍法实现离子液体在介孔氧化铝上的负载, 研究了分散溶剂种类、离子液体用量、超声时间等对离子液体负载量的影响, 并通过透射电子显微镜、扫描电子显微镜、傅里叶变换红外光谱仪和热重分析仪等对功能化离子液体-介孔氧化铝复合材料的微观形貌、结构和热稳定性进行研究. 结果表明:功能化离子液体成功负载在介孔氧化铝中, 最适宜的负载条件为以丙酮为分散溶剂、离子液体与介孔氧化铝的质量比为4∶3、超声时间为60 min, 离子液体在介孔氧化铝中的负载量达到1.04 gIL/gMA, 氧化铝的有序介孔结构在复合材料中保持完好, 复合材料的热稳定性较功能化离子液体显著提高.
Abstract:
In view of the high viscosity and the low mass transfer rate of ionic liquids(ILs),functionalized ionic liquid(IL)-mesoporous alumina(MA)composite materials were designed and synthesized. The ionic liquid was immobilized on mesoporous alumina by ultrasonic impregnation method. The effects of the type of the dispersion solvent,the amount of the ionic liquid and ultrasonic time were respectively investigated. Transmission electron microscopy,scanning electron microscopy,Fourier transform infrared spectrometer and thermal gravimetric analyzer were used to characterize the morphology,structure and thermostability of functionalized IL-MA composite materials. The results show that the functionalized ionic liquid is successfully supported on the mesoporous alumina and the ionic liquid loading capacity on MA can reach 1.04 gIL/gMA under the optimal conditions of using acetone as the dispersion solvent,the mass ratio of ionic liquid to mesoporous alumina being 4∶3 and the ultrasonic time being 60 min. For the composite materials,the ordered mesostructure of alumina is well kept and its thermal stability is greatly enhanced compared with pure functionalized ionic liquid.

参考文献/References:

[1] Billard I, Ouadi A, Gaillard C. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids:from discovery to understanding[J]. Analytical and Bioanalytical Chemistry, 2011, 400(6):1555-1566.
[2] 唐韶坤, 黄伟, 田松江, 等. 低温共熔离子液体用于固体碱制备生物柴油[J]. 天津大学学报:自然科学与工程技术版, 2014, 47(7):625-629.
Tang Shaokun, Huang Wei, Tian Songjiang, et al. Deep eutectic solvent for solid basic catalyzed biodisel production[J]. Journal of Tianjin University:Science and Technology, 2014, 47(7):625-629(in Chinese).
[3] Hernández-Fernández F J, Perez de los Rios A, Mateo-Ramirez F, et al. New application of polymer inclusion membrane based on ionic liquids as proton exchange membrane in microbial fuel cell[J]. Separation and Purification Technology, 2016, 160:51-58.
[4] Erto A, Silvestre-Albero A, Silvestre-Albero J, et al. Carbon-supported ionic liquids as innovative adsorbents for CO2 separation from synthetic flue-gas[J]. Journal of Colloid and Interface Science, 2015, 448:41-50.
[5] 锅小龙, 王陆瑶, 李璐, 等. 固定化离子液体在有机合成中的应用[J]. 化学通报, 2016, 79(1):16-22.
Guo Xiaolong, Wang Luyao, Li Lu, et al. Application of immobilized ionic liquids in organic syntheses[J]. Chemistry Bulletin, 2016, 79(1):16-22(in Chinese).
[6] 彭长宏, 余芳, 程晓苏. 离子液体负载人造沸石的制备研究[J]. 环境科学与技术, 2011, 34(9):114-118.
Peng Changhong, Yu Fang, Cheng Xiaosu. Ionic liquid supported in artificial zeolite[J]. Environmental Science & Technology, 2011, 34(9):114-118(in Chinese).
[7] Miao J, Wan H, Shao Y, et al. Acetalization of carbonyl compounds catalyzed by acidic ionic liquid immobilized on silica gel[J]. Journal of Molecular Catalysis A:Chemical, 2011, 348(1/2):77-82.
[8] Breitenlechner S, Fleck M, Muller T E, et al. Solid catalysts on the basis of supported ionic liquids and their use in hydroamination reactions[J]. Journal of Molecular Catalysis A:Chemical, 2004, 214(1):175-179.
[9] Jiang W, Zheng D, Xun S, et al. Polyoxometalate-based ionic liquid supported on carbon induced solvent-free ultra-deep oxidative desulfurization of model fuels [J]. Fuel, 2017, 190:1-9.
[10] Zhang Z, Wu L, Dong J, et al. Preparation and SO2 sorption/desorption behavior of an ionic liquid supported on porous silica particles[J]. Industrial & Engineering Chemistry Research, 2009, 48(4):2142-2148.
[11] Zhang K, Li C, Yu J, et al. Synthesis of texture-excellent mesoporous alumina using PEG1000 as structure-directing agent[J]. Chinese Journal of Chemical Engineering, 2017, 25(1):137-141.
[12] Li G, Cui X, Tang S. Removal of Cr(IV)using mesoporous alumina with different kinds of pore structures[J]. Journal of Porous Materials, 2016, 23(4):919-926.
[13] Khoshnevis M, Davoodnia A, Zare-Bidaki A, et al. Alumina supported acidic ionic liquid:Preparation, characterization, and its application as catalyst in the synthesis of 1, 8-dioxo-octahydroxanthenes[J]. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry, 2013, 43(9):1154-1161.
[14] Shahkaramipour N, Adibi M, Seifkordi A A, et al. Separation of CO2/CH4 through alumina-supported geminal ionic liquid membranes[J]. Journal of Membrane Science, 2014, 455(4):229-235.
[15] Pizzoccaro M A, Drobek M, Petit E, et al. Design of phosphonated imidazolium-based ionic liquids grafted on γ-alumina:Potential model for hybrid membranes[J]. International Journal of Molecular Science, 2016, 17(8):1212.
[16] Bates E D, Mayton R D, Ntai I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6):926-927.

相似文献/References:

[1]田晶,郭锦棠,朱成才,等.离子液体作用下CO与苯乙烯的交替共聚反应[J].天津大学学报(自然科学版),2007,(06):683.

备注/Memo

备注/Memo:
收稿日期: 2017-04-12; 修回日期: 2017-05-07.
作者简介: 唐韶坤(1974—), 女, 博士, 教授.
通讯作者: 唐韶坤, shktang@tju.edu.cn.
网络出版时间: 2017-05-10.网络出版地址: http://kns.cnki.net/kcms/detail/12.1127.N.20170510.1109.002.html.
基金项目: 中国石油科技创新基金资助项目(2013D-5006-0402).
Supported by the Petro China Innovation Foundation(No. 2013D-5006-0402).
更新日期/Last Update: 2018-04-10