PDF下载 分享
[1]刘海涛,熊坤,贾昕胤,等.3自由度冗余驱动下肢康复并联机构的运动学优化设计[J].天津大学学报(自然科学版),2018,(04):357-366.[doi:10.11784/tdxbz201706060]
 Liu Haitao,Xiong Kun,Jia Xinyin,et al.Kinematic Optimization of a Redundantly Actuated 3-DOF Parallel Mechanism for Lower-Limb Rehabilitation[J].Journal of Tianjin University,2018,(04):357-366.[doi:10.11784/tdxbz201706060]
点击复制

3自由度冗余驱动下肢康复并联机构的运动学优化设计

参考文献/References:

[1] Díaz I, Gil J J, Sánchez E. Lower-limb robotic rehabilitation:Literature review and challenges[J]. Journal of Robotics, 2011, 2011(1):10. 1155/2011/759764.
[2] 丁敏, 李建民, 吴庆文, 等. 下肢步态康复机器人:研究进展及临床应用[J]. 中国组织工程研究, 2010, 14(35):6604-6607.
Ding Min, Li Jianmin, Wu Qingwen, et al. Research advances and clinical application of lower limb gait rehabilitation robots[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(35):6604-6607(in Chinese).
[3] Meng W, Liu Q, Zhou Z, et al. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation[J]. Mechatronics, 2015, 31:132-145.
[4] Colombo G, Joerg M, Schreier R, et al. Treadmill training of paraplegic patients using a robotic orthosis [J]. Journal of Rehabilitation Research and Development, 2000, 37(6):693.
[5] Freivogel S, Mehrholz J, Husak-Sotomayor T, et al. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury:A feasibility study [J]. Brain Injury, 2008, 22(7/8):625-632.
[6] West R G. Powered Gait Orthosis and Method of Utilizing Same:US 6, 689, 075 B2[P]. 2004-02-10.
[7] Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait[J]. Journal of Rehabilitation Research And Development, 2000, 37(6):701-708.
[8] Peshkin M, Brown D A, Santos-Munné J J, et al. Kine Assist:A robotic overground gait and balance training device[C]// 9th International Conference on Rehabilitation Robotics. Chicago, IL, USA, 2005:241-246.
[9] Bouri M, Stauffer Y, Schmitt C, et al. The walk trainer:A robotic system for walking rehabilitation [C]//International Conference on Robotics and Biomimetics. Kunming, China, 2006:1616-1621.
[10] Goffer A. Gait-Locomotor Apparatus:US 7, 153, 242 B2[P]. 2006-12-26.
[11] Kawamoto H, Sankai Y. Power assist system HAL-3 for gait disorder person[C]// International Conference on Computers for Handicapped Persons. Linz, Austria, 2002:196-203.
[12] Schmitt C, Métrailler P. The Motion Maker?:A rehabili tation system combining an orthosis with closed-loop electrical muscle stimulation[C]//8th Vienna International Workshop on Functional Electrical Stimulation. Vienna, Austria, 2004:117-120.
[13] Rastegarpanah A, Saadat M, Borboni A. Parallel robot for lower limb rehabilitation exercises[J]. Applied Bionics And Biomechanics, 2016, 2016:8584735.
[14] Araujo-Gómez P, Díaz-Rodriguez M, Mata V, et al. Design of a 3-UPS-RPU parallel robot for knee diagnosis and rehabilitation[C]//ROMANSY 21-Robot Design, Dynamics and Control. Berlin, Germany:Springer International Publishing, 2016:303-310.
[15] 曾达幸, 胡志涛, 侯雨雷, 等. 一种新型并联式解耦踝关节康复机构及其优化[J]. 机械工程学报, 2015, 51(9):1-9.
Zeng Daxing, Hu Zhitao, Hou Yulei, et al. Novel decoupled parallel mechanism for ankle rehabilitation and its optimization[J]. Journal of Mechanical Engineering, 2015, 51(9):1-9(in Chinese).
[16] Wang Congzhe, Fang Yuefa, Guo Sheng, et al. Design and kinematical performance analysis of a 3-RUS/RRR redundantly actuated parallel mechanism for ankle rehabilitation[J]. Journal of Mechanisms and Robotics, 2013, 5(4):041003-1-041003-11.
[17] Yoon J, Ryu J. A novel reconfigurable ankle/foot rehabili tation robot[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005:2290-2295.
[18] Jamwal P K, Xie S, Aw K C. Kinematic design optimiza tion of a parallel ankle rehabilitation robot using modified genetic algorithm[J]. Robotics and Autonomous Systems, 2009, 57(10):1018-1027.
[19] Gosselin C, Angeles J. A global performance index for the kinematic optimization of robotic manipulators[J]. Journal of Mechanical Design, 1991, 113(3):220-226.
[20] Wang C, Fang Y, Guo S, et al. Design and kinematic analysis of redundantly actuated parallel mechanisms for ankle rehabilitation[J]. Robotica, 2015, 33(2):366-384.
[21] Merlet J P. Jacobian, manipulability, condition number, and accuracy of parallel robots[J]. Journal of Mechanical Design, 2006, 128(1):199-206.
[22] Ball R S. A Treatise on the Theory of Screws[M]. Cam Bridge:Cam Bridge University Press, 1998.
[23] Wang Jinsong, Wu Chao, Liu Xinjun. Performance evaluation of parallel manipulators:Motion/force transmissibility and its index[J]. Mechanism and Machine Theory, 2010, 45(10):1462-1476.
[24] Liu Xinjun, Chen Xiang, Nahon M. Motion/force constrainability analysis of lower-mobility parallel manipulators[J]. Journal of Mechanisms and Robotics, 2014, 6(3):031006.
[25] Liu Haitao, Huang Tian, Kecskeméthy A, et al. A generalized approach for computing the transmission index of parallel mechanisms[J]. Mechanism and Machine Theory, 2014, 74:245-256.
[26] 刘海涛, 熊 坤, 贾昕胤, 等. 一种气动肌肉驱动的三自由度踝关节康复装置:CN 105943306 A[P]. 2016-09-21.
Liu Haitao, Xiong Kun, Jia Xinyin, et al. A 3-DOF Mechanism Actuated by Pneumatic Muscles for Ankle Rehabilitation:CN 105943306 A[P]. 2016-09-21(in Chinese).
[27] Saglia J A, Tsagarakis N G, Dai J S, et al. Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2009, 223(1):53-70.
[28] Mattacola C G, Dwyer M K. Rehabilitation of the ankle after acute sprain or chronic instability[J]. Journal of Athletic Training, 2002, 37(4):413.
[29] Tsoi Y H, Xie S Q. Design and control of a parallel robot for ankle rehabilitation[J]. International Journal of Intelligent Systems Technologies and Applications, 2010, 8(1/2/3/4):100-113.
[30] CGA Normative Gait Database[EB/OL]. http://www. clinicalgaitanalysis.com, 2017-05-25.
[31] Huang Tian, Liu Haitao, Chetwynd D G. Generalized Jacobian analysis of lower mobility manipulators[J]. Mechanism and Machine Theory, 2011, 46(6):831-844.
[32] Dai Jian S, Huang Zhen, Lipkin H. Mobility of overconstrained parallel mechanisms[J]. Journal of Mechanical Design, 2006, 128(1):220-229.
[33] Joshi S A, Tsai L W. Jacobian analysis of limited-DOF parallel manipulators[C]//ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Quebec, Canada, 2002:341-348.
[34] Liu Haitao, Wang Manxin, Huang Tian, et al. A dual space approach for force/motion transmissibility analysis of lower mobility parallel manipulators[J]. Journal of Mechanisms and Robotics, 2015, 7(3):034504-1-034504-7.
[35] Huang Tian, Yang Shuofei, Wang Manxin, et al. An approach to deter mining the unknown twist/wrench subspaces of lower mobility serial kinematic chains[J]. Journal of Mechanisms and Robotics, 2015, 7(3):031003-1-031003-9.
[36] Liu Xinjun, Wu Chao, Wang Jinsong. A new approach for singularity analysis and closeness measurement to singularities of parallel manipulators[J]. Journal of Mechanisms and Robotics, 2012, 4(4):041001-1-041001-9.
[37] Huang Tian, Wang Manxin, Yang Shoufei, et al. Force/motion transmis sibility analysis of six degree of freedom parallel mechanisms[J]. Journal of Mechanisms and Robotics, 2014, 6(3):031010-1-031010-5.
[38] Gan Dongming, Dai Jian S, Dias J, et al. Variable motion/force transmissibility of a metamorphic parallel mechanism with reconfigurable 3T and 3R motion[J]. Journal of Mechanisms and Robotics, 2016, 8(5):051001.
[39] Liu Xinjun, Wu Chao, Xie Fugui. Motion/force transmission indices of parallel manipulators[J]. Frontiers of Mechanical Engineering, 2011, 6(1):89-91.

相似文献/References:

[1]吴孟丽,张大卫,赵兴玉.一种三自由度并联机构的概念设计与运动学分析[J].天津大学学报(自然科学版),2007,(08):965.
[2]高卫国,徐燕申,牛文铁.基于广义装配的液压集成块设计过程建模[J].天津大学学报(自然科学版),2006,(04):443.
[3]王太勇,袁峰,吴振勇.机械产品概念设计中的功能分析方法[J].天津大学学报(自然科学版),2006,(06):679.
[4]周立华,黄田,曾子平,等.中、低速包缝机弯针机构的尺度综合[J].天津大学学报(自然科学版),1997,(01):9.
[5]冯克奇,石则昌,祝毓琥.高速自动送料凸轮连杆组合机构的尺度综合[J].天津大学学报(自然科学版),1989,(01):16.
[6]王玉新,陆锡年.机构型综合权函数方法[J].天津大学学报(自然科学版),1993,(06):0.
[7]石则昌.平面、球面双曲柄机构前置以实现给定运动的尺度综合(Ⅰ) 第一部分[J].天津大学学报(自然科学版),1983,(02):1.
[8]石则昌.平面、球面双曲柄机构前置以实给现定运动的尺度综合(Ⅱ) (第二部分)[J].天津大学学报(自然科学版),1983,(03):1.
[9]项忠霞,邵一鑫,李力力.单自由度可调下肢康复机器人机构优化设计[J].天津大学学报(自然科学版),2017,(08):877.[doi:10.11784/tdxbz201607021]
 Xiang Zhongxia,Shao Yixin,Li Lili.Optimal Design of an Adjustable One-DOF Robot Mechanism for Lower Limb Rehabilitation[J].Journal of Tianjin University,2017,(04):877.[doi:10.11784/tdxbz201607021]

备注/Memo

收稿日期: 2017-06-25; 修回日期: 2017-07-19.
作者简介: 刘海涛(1981—), 男, 博士, 教授.
通讯作者: 刘海涛, liuht@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(51405331).
Supported by the National Natural Science Foundation of China(No. 51405331).

更新日期/Last Update: 2018-04-10