|本期目录/Table of Contents|

[1]刘海涛,熊坤,贾昕胤,等.3自由度冗余驱动下肢康复并联机构的运动学优化设计[J].天津大学学报(自然科学版),2018,(04):357-366.[doi:10.11784/tdxbz201706060]
 Liu Haitao,Xiong Kun,Jia Xinyin,et al.Kinematic Optimization of a Redundantly Actuated 3-DOF Parallel Mechanism for Lower-Limb Rehabilitation[J].Journal of Tianjin University,2018,(04):357-366.[doi:10.11784/tdxbz201706060]
点击复制

3自由度冗余驱动下肢康复并联机构的运动学优化设计()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年04
页码:
357-366
栏目:
论文
出版日期:
2018-04-15

文章信息/Info

Title:
Kinematic Optimization of a Redundantly Actuated 3-DOF Parallel Mechanism for Lower-Limb Rehabilitation
文章编号:
0493-2137(2018)04-0357-10
作者:
刘海涛 熊坤 贾昕胤 项忠霞
天津大学机构理论与装备设计教育部重点实验室,天津 300350
Author(s):
Liu Haitao Xiong Kun Jia Xinyin Xiang Zhongxia
Key Laboratory of Mechanism Theory and Equipment Design of State Ministry of Education, Tianjin University, Tianjin 300350, China
关键词:
概念设计 尺度综合 并联机构 下肢康复
Keywords:
conceptual design dimensional synthesis parallel mechanisms lower-limb rehabilitation
分类号:
TH122
DOI:
10.11784/tdxbz201706060
文献标志码:
A
摘要:
研究了一种用于下肢康复的3自由度冗余驱动并联机构的概念设计和运动学优化.首先对该3自由度并联机构进行了简要介绍, 然后推导了其运动学正逆解的解析解.基于螺旋理论, 对该机构进行了广义雅可比分析, 通过对4种非冗余驱动情形的力/运动传递性能分析, 提出了一种用于评价该并联机构运动学性能的局部传递率指标.最后, 借助于遗传算法, 通过最大化局部传递率指标的全域平均值对该机构的设计变量进行了优化.运动学优化的结果表明, 本文所提出的并联机构在其工作空间内具有较好的力/运动传递性能.
Abstract:
The conceptual design and kinematic optimization of a redundantly actuated three degrees of freedom (DOF)parallel mechanism for lower-limb rehabilitation were studied in this paper. First,a brief description of the proposed 3-DOF parallel mechanism was presented. Then,the explicit expressions of inverse and forward kinematics of the mechanism were derived. By using screw theory,the generalized Jacobian analysis was carried out,based on which the force/motion transmissibility of the redundantly actuated parallel mechanism was investigated via four individual cases without actuation redundancy,leading to a local transmission index for the evaluation of kinematic performance of the proposed mechanism. Finally,the design variables of the mechanism were optimized by maximizing the mean value of the local transmission index with the aid of genetic algorithm(GA). The result of the kinematic optimization shows that the proposed parallel mechanism can achieve good force/motion transmissibility in its workspace.

参考文献/References:

[1] Díaz I, Gil J J, Sánchez E. Lower-limb robotic rehabilitation:Literature review and challenges[J]. Journal of Robotics, 2011, 2011(1):10. 1155/2011/759764.
[2] 丁敏, 李建民, 吴庆文, 等. 下肢步态康复机器人:研究进展及临床应用[J]. 中国组织工程研究, 2010, 14(35):6604-6607.
Ding Min, Li Jianmin, Wu Qingwen, et al. Research advances and clinical application of lower limb gait rehabilitation robots[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(35):6604-6607(in Chinese).
[3] Meng W, Liu Q, Zhou Z, et al. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation[J]. Mechatronics, 2015, 31:132-145.
[4] Colombo G, Joerg M, Schreier R, et al. Treadmill training of paraplegic patients using a robotic orthosis [J]. Journal of Rehabilitation Research and Development, 2000, 37(6):693.
[5] Freivogel S, Mehrholz J, Husak-Sotomayor T, et al. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury:A feasibility study [J]. Brain Injury, 2008, 22(7/8):625-632.
[6] West R G. Powered Gait Orthosis and Method of Utilizing Same:US 6, 689, 075 B2[P]. 2004-02-10.
[7] Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait[J]. Journal of Rehabilitation Research And Development, 2000, 37(6):701-708.
[8] Peshkin M, Brown D A, Santos-Munné J J, et al. Kine Assist:A robotic overground gait and balance training device[C]// 9th International Conference on Rehabilitation Robotics. Chicago, IL, USA, 2005:241-246.
[9] Bouri M, Stauffer Y, Schmitt C, et al. The walk trainer:A robotic system for walking rehabilitation [C]//International Conference on Robotics and Biomimetics. Kunming, China, 2006:1616-1621.
[10] Goffer A. Gait-Locomotor Apparatus:US 7, 153, 242 B2[P]. 2006-12-26.
[11] Kawamoto H, Sankai Y. Power assist system HAL-3 for gait disorder person[C]// International Conference on Computers for Handicapped Persons. Linz, Austria, 2002:196-203.
[12] Schmitt C, Métrailler P. The Motion Maker?:A rehabili tation system combining an orthosis with closed-loop electrical muscle stimulation[C]//8th Vienna International Workshop on Functional Electrical Stimulation. Vienna, Austria, 2004:117-120.
[13] Rastegarpanah A, Saadat M, Borboni A. Parallel robot for lower limb rehabilitation exercises[J]. Applied Bionics And Biomechanics, 2016, 2016:8584735.
[14] Araujo-Gómez P, Díaz-Rodriguez M, Mata V, et al. Design of a 3-UPS-RPU parallel robot for knee diagnosis and rehabilitation[C]//ROMANSY 21-Robot Design, Dynamics and Control. Berlin, Germany:Springer International Publishing, 2016:303-310.
[15] 曾达幸, 胡志涛, 侯雨雷, 等. 一种新型并联式解耦踝关节康复机构及其优化[J]. 机械工程学报, 2015, 51(9):1-9.
Zeng Daxing, Hu Zhitao, Hou Yulei, et al. Novel decoupled parallel mechanism for ankle rehabilitation and its optimization[J]. Journal of Mechanical Engineering, 2015, 51(9):1-9(in Chinese).
[16] Wang Congzhe, Fang Yuefa, Guo Sheng, et al. Design and kinematical performance analysis of a 3-RUS/RRR redundantly actuated parallel mechanism for ankle rehabilitation[J]. Journal of Mechanisms and Robotics, 2013, 5(4):041003-1-041003-11.
[17] Yoon J, Ryu J. A novel reconfigurable ankle/foot rehabili tation robot[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005:2290-2295.
[18] Jamwal P K, Xie S, Aw K C. Kinematic design optimiza tion of a parallel ankle rehabilitation robot using modified genetic algorithm[J]. Robotics and Autonomous Systems, 2009, 57(10):1018-1027.
[19] Gosselin C, Angeles J. A global performance index for the kinematic optimization of robotic manipulators[J]. Journal of Mechanical Design, 1991, 113(3):220-226.
[20] Wang C, Fang Y, Guo S, et al. Design and kinematic analysis of redundantly actuated parallel mechanisms for ankle rehabilitation[J]. Robotica, 2015, 33(2):366-384.
[21] Merlet J P. Jacobian, manipulability, condition number, and accuracy of parallel robots[J]. Journal of Mechanical Design, 2006, 128(1):199-206.
[22] Ball R S. A Treatise on the Theory of Screws[M]. Cam Bridge:Cam Bridge University Press, 1998.
[23] Wang Jinsong, Wu Chao, Liu Xinjun. Performance evaluation of parallel manipulators:Motion/force transmissibility and its index[J]. Mechanism and Machine Theory, 2010, 45(10):1462-1476.
[24] Liu Xinjun, Chen Xiang, Nahon M. Motion/force constrainability analysis of lower-mobility parallel manipulators[J]. Journal of Mechanisms and Robotics, 2014, 6(3):031006.
[25] Liu Haitao, Huang Tian, Kecskeméthy A, et al. A generalized approach for computing the transmission index of parallel mechanisms[J]. Mechanism and Machine Theory, 2014, 74:245-256.
[26] 刘海涛, 熊 坤, 贾昕胤, 等. 一种气动肌肉驱动的三自由度踝关节康复装置:CN 105943306 A[P]. 2016-09-21.
Liu Haitao, Xiong Kun, Jia Xinyin, et al. A 3-DOF Mechanism Actuated by Pneumatic Muscles for Ankle Rehabilitation:CN 105943306 A[P]. 2016-09-21(in Chinese).
[27] Saglia J A, Tsagarakis N G, Dai J S, et al. Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2009, 223(1):53-70.
[28] Mattacola C G, Dwyer M K. Rehabilitation of the ankle after acute sprain or chronic instability[J]. Journal of Athletic Training, 2002, 37(4):413.
[29] Tsoi Y H, Xie S Q. Design and control of a parallel robot for ankle rehabilitation[J]. International Journal of Intelligent Systems Technologies and Applications, 2010, 8(1/2/3/4):100-113.
[30] CGA Normative Gait Database[EB/OL]. http://www. clinicalgaitanalysis.com, 2017-05-25.
[31] Huang Tian, Liu Haitao, Chetwynd D G. Generalized Jacobian analysis of lower mobility manipulators[J]. Mechanism and Machine Theory, 2011, 46(6):831-844.
[32] Dai Jian S, Huang Zhen, Lipkin H. Mobility of overconstrained parallel mechanisms[J]. Journal of Mechanical Design, 2006, 128(1):220-229.
[33] Joshi S A, Tsai L W. Jacobian analysis of limited-DOF parallel manipulators[C]//ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Quebec, Canada, 2002:341-348.
[34] Liu Haitao, Wang Manxin, Huang Tian, et al. A dual space approach for force/motion transmissibility analysis of lower mobility parallel manipulators[J]. Journal of Mechanisms and Robotics, 2015, 7(3):034504-1-034504-7.
[35] Huang Tian, Yang Shuofei, Wang Manxin, et al. An approach to deter mining the unknown twist/wrench subspaces of lower mobility serial kinematic chains[J]. Journal of Mechanisms and Robotics, 2015, 7(3):031003-1-031003-9.
[36] Liu Xinjun, Wu Chao, Wang Jinsong. A new approach for singularity analysis and closeness measurement to singularities of parallel manipulators[J]. Journal of Mechanisms and Robotics, 2012, 4(4):041001-1-041001-9.
[37] Huang Tian, Wang Manxin, Yang Shoufei, et al. Force/motion transmis sibility analysis of six degree of freedom parallel mechanisms[J]. Journal of Mechanisms and Robotics, 2014, 6(3):031010-1-031010-5.
[38] Gan Dongming, Dai Jian S, Dias J, et al. Variable motion/force transmissibility of a metamorphic parallel mechanism with reconfigurable 3T and 3R motion[J]. Journal of Mechanisms and Robotics, 2016, 8(5):051001.
[39] Liu Xinjun, Wu Chao, Xie Fugui. Motion/force transmission indices of parallel manipulators[J]. Frontiers of Mechanical Engineering, 2011, 6(1):89-91.

相似文献/References:

[1]吴孟丽,张大卫,赵兴玉.一种三自由度并联机构的概念设计与运动学分析[J].天津大学学报(自然科学版),2007,(08):965.
[2]高卫国,徐燕申,牛文铁.基于广义装配的液压集成块设计过程建模[J].天津大学学报(自然科学版),2006,(04):443.
[3]王太勇,袁峰,吴振勇.机械产品概念设计中的功能分析方法[J].天津大学学报(自然科学版),2006,(06):679.
[4]周立华,黄田,曾子平,等.中、低速包缝机弯针机构的尺度综合[J].天津大学学报(自然科学版),1997,(01):9.
[5]冯克奇,石则昌,祝毓琥.高速自动送料凸轮连杆组合机构的尺度综合[J].天津大学学报(自然科学版),1989,(01):16.
[6]王玉新,陆锡年.机构型综合权函数方法[J].天津大学学报(自然科学版),1993,(06):0.
[7]石则昌.平面、球面双曲柄机构前置以实现给定运动的尺度综合(Ⅰ) 第一部分[J].天津大学学报(自然科学版),1983,(02):1.
[8]石则昌.平面、球面双曲柄机构前置以实给现定运动的尺度综合(Ⅱ) (第二部分)[J].天津大学学报(自然科学版),1983,(03):1.
[9]项忠霞,邵一鑫,李力力.单自由度可调下肢康复机器人机构优化设计[J].天津大学学报(自然科学版),2017,(08):877.[doi:10.11784/tdxbz201607021]
 Xiang Zhongxia,Shao Yixin,Li Lili.Optimal Design of an Adjustable One-DOF Robot Mechanism for Lower Limb Rehabilitation[J].Journal of Tianjin University,2017,(04):877.[doi:10.11784/tdxbz201607021]

备注/Memo

备注/Memo:
收稿日期: 2017-06-25; 修回日期: 2017-07-19.
作者简介: 刘海涛(1981—), 男, 博士, 教授.
通讯作者: 刘海涛, liuht@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(51405331).
Supported by the National Natural Science Foundation of China(No. 51405331).
更新日期/Last Update: 2018-04-10