|本期目录/Table of Contents|

[1]朱劲松,陈科旭,孟庆领.大跨度悬索桥空间温度场精细分析方法[J].天津大学学报(自然科学版),2018,(04):339-347.[doi:10.11784/tdxbz201704112]
 Zhu Jinsong,Chen Kexu,Meng Qingling.Fine Analysis Method for Spatial Temperature Field of Long-Span Suspension Bridge[J].Journal of Tianjin University,2018,(04):339-347.[doi:10.11784/tdxbz201704112]
点击复制

大跨度悬索桥空间温度场精细分析方法()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年04
页码:
339-347
栏目:
论文
出版日期:
2018-04-15

文章信息/Info

Title:
Fine Analysis Method for Spatial Temperature Field of Long-Span Suspension Bridge
文章编号:
0493-2137(2018)04-0339-09
作者:
朱劲松12 陈科旭1 孟庆领1
1. 天津大学建筑工程学院,天津 300072;2. 滨海土木工程结构与安全教育部重点实验室(天津大学),天津 300072
Author(s):
Zhu Jinsong12 Chen Kexu1 Meng Qingling1
1.School of Civil Engineering, Tianjin University, Tianjin 300072, China
2.Key Laboratory of Coast Civil Structure Safety(Tianjin University), Ministry of Education, Tianjin 300072, China
关键词:
悬索桥 自然环境 热传导 空间温度场 多尺度分析
Keywords:
suspension bridge natural environment heat transfer spatial temperature field multi-scale analysis
分类号:
U448.25
DOI:
10.11784/tdxbz201704112
文献标志码:
A
摘要:
为了研究悬索桥空间温度场分布及其变化规律, 提出了自然环境下大跨度悬索桥空间温度场精细分析方法.首先根据构件表面所在位置和太阳入射角判断大跨度悬索桥构件外表面的遮挡状态, 然后基于传热理论计算构件外表面所受辐射能, 通过对构件各外表面施加辐射荷载和对流换热边界计算大跨度悬索桥空间温度场, 最后以某大跨度悬索桥为例, 采用多尺度分析方法计算主缆的热物性参数, 在此基础上得到了自然环境下该桥空间温度场分布.结果表明, 自然环境下大跨度悬索桥主缆空间温度场关于跨中非对称分布, 最高温度出现在近跨中受太阳正面照射的节段, 主塔迎阳面和背阳面最大温差近7 ℃, 桥面阴影区与相邻非阴影区温差达15 ℃.以该方法为基础, 可以实现大跨度悬索桥健康监测系统结构响应中温度效应的精确分离.
Abstract:
In order to study the spatial temperature distributions of suspension bridges in natural environment,a method for finely analyzing the spatial temperature field of long-span suspension bridges is proposed. First,the occlusion state is judged according to the position and solar incident angle of the bridge component surface. Then,the radiation energy applied on the component surface is calculated based on heat transfer theory. Through applying the solar radiation and the convective heat transfer,the spatial temperature field of long-span suspension bridge is calculated. Finally,taking a long-span suspension bridge as an example,the material parameters for thermal analysis are obtained through multi-scale analysis and the spatial temperature distributions are calculated based on those parameters. It is shown that the spatial temperature distributions of the main cable in natural environment are not symmetrical about the mid-span. The highest temperature appears in the main cable segment near the mid-span and irradiated by the sun. The maximum temperature difference between the solar radiation surface and the shaded surface of the main tower is up to 7 ℃. The temperature difference between the shaded area and adjacent non-shadow area is as high as 15 ℃. Based on this method,accurate separation of temperature effects in structural responses of long-span suspension bridge health monitoring system can be realized.

参考文献/References:

[1] 汪东林, 张伟. 悬索桥主缆温度场计算模型构建分析[J]. 公路交通科技, 2015, 32(8):66-71.
Wang Donglin, Zhang Wei. Analysis of temperature field calculation of main cables of suspension bridge[J]. Journal of Highway and Transportation Research and Development, 2015, 32(8):66-71(in Chinese).
[2] 俞明德, 沈锐利, 唐茂林, 等. 西堠门大桥主缆横断面温度场研究[J]. 建筑科学与工程学报, 2010, 27(3):53-58.
Yu Mingde, Shen Ruili, Tang Maolin, et al. Research on temperature field of main cable section of Xihoumen bridge[J]. Journal of Architecture and Civil Engineer-ing, 2010, 27(3):53-58(in Chinese).
[3] Taysi N, Abid S. Temperature distributions and variations in concrete box-girder bridges:Experimental and finite element parametric studies[J]. Advances in Structural Engineering, 2015, 18(4):469-486.
[4] 王达, 张永健, 黄平明. 大跨度悬索桥主缆施工温度时变效应研究[J]. 公路交通科技, 2010, 27(12):73-77.
Wang Da, Zhang Yongjian, Huang Pingming. Research on temperature time-varying effect of long-span suspension during main cable construction[J]. Journal of Highway and Transportation Research and Develop-ment, 2010, 27(12):73-77(in Chinese).
[5] Zhou Liren, Xia Yong, Janes M W B, et al. Temperature analysis of a long-span suspension bridge based on field monitoring and numerical simulation[J]. Journal of Bridge Engineering, 2016, 21(1):1-7.
[6] 刘来君, 贺拴海. 索鞍无预偏施工悬索桥主缆的温度效应[J]. 长安大学学报:自然科学版, 2007, 27(1):40-44.
Liu Laijun, He Shuanhai. Temperature effect on suspension bridge with non-pre-bias of cable-saddle[J]. Journal of Chang’an University:Natural Science Edition, 2007, 27(1):40-44(in Chinese).
[7] Liu Hongbo, Chen Zhihua, Zhou Ting. Theoretical and experimental study on the temperature distribution of H-shaped steel members under solar radiation[J]. Applied Thermal Engineering, 2012, 37:329-335.
[8] 丁幼亮, 王晓晶, 王高新, 等. 珠江黄埔大桥钢箱梁温度长期监测与分析[J]. 东南大学学报:自然科学版, 2012, 42(5):945-949.
Ding Youliang, Wang Xiaojing, Wang Gaoxin, et al. Long-term temperature monitoring and analysis of steel box girders of Pearl River Huangpu bridge[J]. Journal of Southeast University:Natural Science Edition, 2012, 42(5):945-949(in Chinese).
[9] 张玉平, 杨宁, 李传习. 无铺装层钢梁日照温度场分析[J]. 工程力学, 2011, 28(6):156-162.
Zhang Yuping, Yang Ning, Li Chuanxi. Research on temperature field of steel box girder without pavement caused by the solar radiations[J]. Engineering Mechanics, 2011, 28(6):156-162(in Chinese).
[10] Zhu Jinsong, Meng Qingling. Effective and fine analysis for temperature effect of bridges in natural environments [J]. Journal of Bridge Engineering, 2017, 22(6):1-19.
[11] 徐海鹰, 赵少杰. 悬索桥主缆温度场计算[J]. 铁道工程学报, 2012, 160(1):45-50.
Xu Haiying, Zhao Shaojie. Calculation of temperature field of main cable of suspension bridge[J]. Journal of Railway Engineering Society, 2012, 160(1):45-50(in Chinese).
[12] Robert W, Ki Y K, James B J. Effect of solar radiation on suspension bridge performance[J]. Journal of Bridge Engineering, 2015, 20(5):1-12.
[13] Severny A. Solar Physics[M]. California:University Press of the Pacific, 2004.
[14] 刘兴法. 太阳辐射对桥梁结构的影响[M]. 北京:中国铁道出版社, 1981.
Liu Xingfa. Effect of Solar Radiation on the Bridge Struc ture[M]. Beijing:China Railway Press, 1981(in Chinese).
[15] Lee J H, Kalkan. Analysis of thermal environmental effects on precast, pre-stressed concrete bridge girders:Temperature differentials and thermal deformations[J]. Advances in Structure Engineering, 2012, 15(3):447-459.
[16] 李伟. 太阳辐射作用下混凝土箱梁桥温度分布和温度应力的研究[D]. 天津:天津大学机械工程学院, 2013.
Li Wei. The Study on Temperature Distributions and Thermal Stress of Concrete Box-Girder Bridge Under Solar Radiation[D]. Tianjin:School of Mechanical Engineering, Tianjin University, 2013(in Chinese).
[17] 中交公路规划设计院. JTG D60—2015 公路桥涵设计通用规范[S]. 北京:人民交通出版社, 2015.
CCCC Highway Consultants. JTG D60—2015 General Code for Design of Highway Bridges and Culverts[S]. Beijing:China Communications Press, 2015(in Chinese).
[18] 夏国平, 张哲, 叶毅. 斜拉-悬索协作体系桥的温度效应分析[J]. 武汉理工大学学报:交通科学与工程版, 2009, 33(5):892-896.
Xia Guoping, Zhang Zhe, Ye Yi. Analysis of temperature field on cable-stayed suspension bridge[J]. Journal of Wuhan University of Technology:Transportation Science and Engineering Edition, 2009, 33(5):892-896(in Chinese).

相似文献/References:

[1]彭一刚,高珍明,王乃香.福建古田湖风景区规划[J].天津大学学报(自然科学版),1982,(S1):0.
[2]王乃弓.天津干部疗养院的庭院空间设计[J].天津大学学报(自然科学版),1982,(S1):0.

备注/Memo

备注/Memo:
收稿日期: 2017-04-27; 修回日期: 2017-09-29.
作者简介: 朱劲松(1975—), 男, 博士, 教授.
通讯作者: 朱劲松, jszhu@tju.edu.cn.
基金项目: 天津市科技支撑计划重点资助项目(16YFZCSF00460); 天津市自然科学基金资助项目(16JCZDJC40300).
Supported by the Science and Technology Support Program of Tianjin, China(No.,16YFZCSF00460)and the Natural Science Foundation of Tianjin, China(No.16JCZDJC40300).
更新日期/Last Update: 2018-04-10