|本期目录/Table of Contents|

[1]李明超,张野,周四宝.基于岩体三维裂隙网络模型的随机块体稳定分析[J].天津大学学报(自然科学版),2018,(04):331-338.[doi:10.11784/tdxbz201703059]
 Li Mingchao,Zhang Ye,Zhou Sibao.Stability Analysis of Stochastic Rock Blocks Based on Three-Dimensional Fracture Network Rock Mass Structure Model[J].Journal of Tianjin University,2018,(04):331-338.[doi:10.11784/tdxbz201703059]
点击复制

基于岩体三维裂隙网络模型的随机块体稳定分析()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年04
页码:
331-338
栏目:
论文
出版日期:
2018-04-15

文章信息/Info

Title:
Stability Analysis of Stochastic Rock Blocks Based on Three-Dimensional Fracture Network Rock Mass Structure Model
文章编号:
0493-2137(2018)04-0331-08
作者:
李明超1 张野1 周四宝2
1. 天津大学水利工程仿真与安全国家重点实验室,天津 300354;2. 浙江省水利水电勘测设计院,杭州 310002
Author(s):
Li Mingchao1 Zhang Ye1 Zhou Sibao2
1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300354, China
2.Zhejiang Design Institute of Water Conservancy and Hydroelectric Power, Hangzhou 310002, China
关键词:
岩体结构 三维地质模型 多边形离散裂隙网络 随机块体 稳定性分析 块体支护
Keywords:
rock mass structure 3D geological model polygonal discrete fracture network stochastic rock block stability analysis support intensity of rock blocks
分类号:
TU457
DOI:
10.11784/tdxbz201703059
文献标志码:
A
摘要:
利用蒙特卡洛模拟方法和三维地质建模技术建立多边形离散裂隙网络与工程岩体的耦合模型, 并对随机块体进行了识别分析, 提出了一种新的随机岩石块体支护分析方法.根据空间坐标和地质属性对耦合模型进行分区, 统计各个区域内块体的埋深、体积和密集度, 研究随机块体的空间分布规律; 在自重和地震两种情况下分别计算各区域的块体失稳概率和支护强度.通过以上参数的计算和分析, 为锚杆间距、长度和锚杆支护力提供参数化指导, 同时也可对支护方案进行检验.最后将该方法应用于某取水隧洞岩体支护分析中.
Abstract:
Based on Monte Carlo simulation method and 3D geological modeling technology,a rock mass structure model with polygonal discrete fracture network was reconstructed and the identification of stochastic rock blocks was conducted. Then,a new approach of stability and support analysis for stochastic rock blocks of tunnels was presented. The model was divided into several subareas according to positions and geological attributes. And the depths,the volume and tensity of blocks were calculated to study the rule of block distribution in each subarea. The instability probabilities and support intensities of stochastic rock blocks under self-weight and seismic condition were calculated as well. These parameters contribute to the determination of the bolt spacing,lengths and support force of single bolt and provide parametric guidance to design a support scheme of stochastic rock blocks in the tunnel. Meantime it can also be used in support scheme test. This method has been applied to the stability support of an intake tunnel.

参考文献/References:

[1] Goodman R E, Shi G H. Block Theory and Its Application to Rock Engineering[M]. New Jersey:Prentice-Hall, 1985.
[2] Zheng J, Deng J, Zhang G, et al. Validation of Monte Carlo simulation for discontinuity locations in space[J]. Computers and Geotechnics, 2015, 67:103-109.
[3] Elmouttie M K, Poropat G V. A method to estimate in situ block size distribution[J]. Rock Mechanics and Rock Engineering, 2012, 45(3):401-407.
[4] Sturzenegger M, Stead D, Elmo D. Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape[J]. Engineering Geology, 2011, 119(3):96-111.
[5] Hekmatnejad A, Emery X, Vallejos J A. Robust estimation of the fracture diameter distribution from the true trace length distribution in the Poisson-disc discrete fracture network model[J]. Computers and Geotechnics, 2018, 95:137-146.
[6] Han X, Chen J, Wang Q, et al. A 3D fracture network model for the undisturbed rock mass at the Songta dam site based on small samples[J]. Rock Mechanics and Rock Engineering, 2016, 49(2):611-619.
[7] 岳攀, 钟登华, 吴含, 等. 基于 LHS 的坝基岩体三维裂隙网络模拟[J]. 水力发电学报, 2016 35(10):93-102.
Yue Pan, Zhong Denghua, Wu Han, et al. Simulations of 3-D fracture networks in rock mass of dam foundation using Latin hypercube sampling[J]. Journal of Hydroelectric Engineering, 2016, 35(10):93-102(in Chinese).
[8] 张奇, 王清, 阙金声, 等. 基于凝聚层次聚类分析法的岩体随机结构面产状优势分组[J]. 岩土工程学报, 2014, 36(8):1432-1437.
Zhang Qi, Wang Qing, Que Jinsheng, et al. Dominant partitioning of discontinuities of rock masses based on AGNES[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(18):1432-1437(in Chinese).
[9] Zhan J, Xu P, Chen J, et al. A stepwise approach for 3D fracture intersection analysis and application to a hydropower station in Southwest China[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 89:116-128.
[10] Guo L, Li X, Zhou Y, et al. Generation and verification of three-dimensional network of fractured rock masses stochastic discontinuities based on digitalization[J]. Environmental Earth Sciences, 2015, 73(11):7075-7088.
[11] Hyman J D, Karra S, Makedonska N, et al. DFNWorks:A discrete fracture network framework for modeling subsurface flow and transport[J]. Computers & Geosciences, 2015, 84:10-19.
[12] Xu C, Dowd P. A new computer code for discrete fracture network modelling[J]. Computers & Geosciences, 2010, 36(3):292-301.
[13] Hadgu T, Karra S, Kalinina E, et al. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock[J]. Journal of Hydrology, 2017, 553:59-70.
[14] Makedonska N, Hyman J D, Karra S, et al. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks[J]. Advances in Water Resources, 2016, 94:486-497.
[15] Xu C, Dowd P A, Wyborn D. Optimisation of a stochastic rock fracture model using Markov chain Monte Carlo simulation[J]. Mining Technology, 2013, 122(3):153-158.
[16] Zhang Q H, Wu A Q, Zhang L J. Statistical analysis of stochastic blocks and its application to rock support[J]. Tunnelling and Underground Space Technology, 2014, 43:426-439.
[17] Li M C, Zhou S B, Wang G. 3D identification and stability analysis of key surface blocks of rock slope[J]. Transactions of Tianjin University, 2016, 22(4):317-323.
[18] Zhong D H, Li M C, Song L G, et al. Enhanced NURBS modeling and visualization for large 3D geoengineering applications:An example from the Jinping first-level hydropower engineering project, China[J]. Computers and Geosciences, 2006, 32(9):1270-1282.
[19] Baecher G B, Lanney N A, Einstein H H. Statistical description of rock properties and sampling[C]// Proceedings of the 18th US Symposium on Rock Mechanics(USRMS). Golden, USA, 1977:1-8.
[20] Einstein H H, Veneziano D, Baecher G B, et al. The effect of discontinuity persistence on rock slope stability [C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, Turkey, 1983:227-236.
[21] 周维垣, 杨若琼, 尹健民, 等. 三维岩体构造网络生成的自协调法及工程应用[J]. 岩石力学与工程学报, 1997, 16(1):29-35.
Zhou Weiyuan, Yang Ruoqiong, Yin Jianmin, et al. Three dimensional joint network in rock mass using self adjusted method and engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(1):29-35(in Chinese).
[22] Dershowitz W S, Einstein H H. Characterizing rock joint geometry with joint system models[J]. Rock Mechanics and Rock Engineering, 1988, 21(1):21-51.
[23] 张贵科, 徐卫亚. 裂隙网络模拟与REV尺度研究[J]. 岩土力学, 2008, 29(6):1675-1680.
Zhang Guike, Xu Weiya. Analysis of joint network simulation method and REV scale[J]. Rock and Soil Mechanics, 2008, 29(6):1675-1680(in Chinese).
[24] Ni P P, Wang S H, Wang C G, et al. Estimation of REV size for fractured rock mass based on damage coefficient[J]. Rock Mechanics and Rock Engineering, 2017, 50(3):555-570.
[25] Li M C, Liu J, Liu F, et al. Method for identifying and analyzing 3D surface blocks of rock mass structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(10):1756-1764.
[26] 徐栋栋, 邬爱清, 卢波, 等. 基于地震时程曲线的块体动安全系数计算[J]. 长江科学院院报, 2011, 28(11):67-71.
Xu Dongdong, Wu Aiqing, Lu Bo, et al. Calculation of block dynamic safety factor based on seismic time history curve[J]. Journal of Yangtze River Scientific Research Institute, 2011, 28(11):67-71(in Chinese).

相似文献/References:

[1]王乾伟,钟登华,佟大威,等.基于数值模拟的注浆过程三维动态可视化[J].天津大学学报(自然科学版),2017,(08):788.[doi:10.11784/tdxbz201701016]
 Wang Qianwei,Zhong Denghua,Tong Dawei,et al.3D Dynamic Visualization of Grouting Process Based on Numerical Simulation[J].Journal of Tianjin University,2017,(04):788.[doi:10.11784/tdxbz201701016]

备注/Memo

备注/Memo:
收稿日期: 2017-03-21; 修回日期: 2017-05-26.
作者简介: 李明超(1979—), 男, 博士, 教授.
通讯作者: 李明超, lmc@tju.edu.cn.
基金项目: 国家优秀青年科学基金资助项目(51622904); 国家自然科学基金资助项目(51379006).
Supported by the National Natural Science Foundation for Excellent Young Scientists(No.,51622904)and the National Natural Science Foundation of China (No.,51379006).
更新日期/Last Update: 2018-04-10