|本期目录/Table of Contents|

[1]肖理庆,王化祥,聂文艳.电阻层析成像系统阵列电极宽度优化[J].天津大学学报(自然科学版),2018,(01):79-87.[doi:10.11784/tdxbz201602032]
 Xiao Liqing,Wang Huaxiang,Nie Wenyan.Width Optimization of Array Electrode for Electrical Resistance Tomography System[J].Journal of Tianjin University,2018,(01):79-87.[doi:10.11784/tdxbz201602032]
点击复制

电阻层析成像系统阵列电极宽度优化()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年01
页码:
79-87
栏目:
出版日期:
2018-01-08

文章信息/Info

Title:
Width Optimization of Array Electrode for Electrical Resistance Tomography System
文章编号:
0493-2137(2018)01-0079-09
作者:
肖理庆12 王化祥3 聂文艳2
1. 天津大学精密仪器与光电子工程学院,天津 300072;2. 淮南师范学院机械与电气工程学院,淮南 232038;3. 天津大学电气自动化与信息工程学院,天津 300072
Author(s):
Xiao Liqing12 Wang Huaxiang3 Nie Wenyan2
1.School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2. School of Mechanical and Electrical Engineering, Huainan Normal University, Huainan 232038, China
3.School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
关键词:
电阻层析成像 阵列电极 灵敏度矩阵 图像重建 病态性
Keywords:
electrical resistance tomography array electrode sensitivity matrix image reconstruction ill-posedness
分类号:
TK39
DOI:
10.11784/tdxbz201602032
文献标志码:
A
摘要:
在电阻层析成像技术中, 其他条件相同的情况下, 不同宽度阵列电极对应的灵敏度矩阵不同. 为了提高算法反演精度, 以敏感场均匀分布时灵敏度矩阵条件数的倒数为适应度函数, 在优化有限元模型拓扑结构的同时, 利用改进粒子群算法优化电阻层析成像系统阵列电极宽度, 并将优化结果应用于改进牛顿-拉夫逊算法. 仿真实验结果表明, 相比其他两种不同宽度阵列电极与拓扑结构的有限元模型, 优化结果对应的灵敏度矩阵条件数分别降低了36.444 3% 和24.345 6% , 有效改善了灵敏度矩阵的病态性, 从而提高了算法反演精度.
Abstract:
In electrical resistance tomography(ERT),array electrodes of different widths lead to different sensitivity matrices,other things being equal. In order to enhance the inversion accuracy of the image reconstruction algorithms,the reciprocal of the condition number of the sensitivity matrix with homogeneous distribution of resistivity in the sensitive field,was designed as the fitness function,based on which the width of array electrode for electrical resistance tomography system and the topology of the finite element mesh were optimized using the improved PSO algorithm,and the best result obtained by the improved PSO algorithm was used to generate the sensitivity matrix,which was thereafter applied to image reconstruction using the improved Newton-Raphson algorithm. Simulation results demonstrate that,compared to the other two finite element meshes of different topologies and width,the condition number is reduced by 36.444 3% and 24.345 6%,the ill-posedness is improved effectively,and thus it is propitious to enhance the inversion accuracy of the algorithm.

参考文献/References:

[1] 陈江涛, 刘石. 融合电容层析成像先验信息的集合卡尔曼滤波统计估计[J]. 化学工程, 2012, 40(4):36-39.
Chen Jiangtao, Liu Shi. Statistical estimation of ensemble Kalman filter fusion based on priori information approach in electrical capacitance tomography[J]. Chemical Engineering, 2012, 40(4):36-39(in Chinese).
[2] Chen Qi, Liu Shi. Flame imaging in meso-scale porous media burner using electrical capacitance tomography [J]. Chinese Journal of Chemical Engineering, 2012, 20(2):329-336.
[3] 陈晓艳, 杨永政, 杜萌. 无解调电阻抗成像方法研究[J]. 传感技术学报, 2015, 28(6):870-875.
Chen Xiaoyan, Yang Yongzheng, Du Meng. Non-demodulation method study for electrical impedance tomography[J]. Chinese Journal of Sensors and Actuators, 2015, 28(6):870-875(in Chinese).
[4] 董峰, 赵佳, 许燕斌, 等. 用于电阻层析成像的快速自适应硬阈值算法[J]. 天津大学学报:自然科学与工程技术版, 2015, 48(4):305-310.
Dong Feng, Zhao Jia, Xu Yanbin, et al. A fast adaptive iterative hard threshold algorithm for electrical resistance tomography[J]. Journal of Tianjin University:Science and Technology, 2015, 48(4):305-310(in Chinese).
[5] Dong Feng, Xu Yanbin. Application of electrical resistance tomography in two-phase flow measurement[J]. Journal of Engineering Thermophysics, 2006, 27(5):791-794.
[6] Daily W, Ramirez A. Electrical resistance tomography [J]. Society of Exploration Geophysicists, 2004, 23(5):438-442.
[7] Ma X, Peyton A J, Higson S R, et al. Hardware and software design for an electromagnetic induction tomography(EMT)system for high contrast metal process applications[J]. Measurement Science & Technology, 2006, 17(1):111-118.
[8] Yin W, Peyton A J. A planar EMT system for the detection of faults on thin metallic plates[J]. Measurement Science & Technology, 2006, 17(8):2130-2135.
[9] 魏颖, 于海斌, 温佩芝, 等. ERT传感器结构研究与优化设计[J]. 仪器仪表学报, 2003, 24(6):632-635.
Wei Ying, Yu Haibin, Wen Peizhi, et al. The research of sensor structure and optimum design for ERT[J]. Chinese Journal of Scientific Instrument, 2003, 24(6):
632-635(in Chinese).
[10] 王化祥, 汪婧, 胡理, 等. ERT/ECT双模态敏感阵列电极优化设计[J]. 天津大学学报, 2008, 41(8):911-918.
Wang Huaxiang, Wang Jing, Hu Li, et al. Optimal design of ERT/ECT dual-modality sensing electrode array [J]. Journal of Tianjin University, 2008, 41(8):911-918(in Chinese).
[11] Wang Yan, Sha Hong, Ren Chaoshi. Optimum design of electrode structure and parameters in electrical impedance tomography[J]. Physiological Measurement, 2006, 27(3):291-306.
[12] Xiao Liqing, Xue Qian, Wang Huaxiang. Finite element mesh optimisation for improvement of the sensitivity matrix in electrical resistance tomography[J]. IET Science, Measurement & Technology, 2015, 9(7):792-799.
[13] 张水平, 仲伟彪. 改进学习因子和约束因子的混合粒子群算法[J]. 计算机应用研究, 2015, 32(12):3626-3628, 3653.
Zhang Shuiping, Zhong Weibiao. Hybrid particle swarm optimization algorithm of new learning factors and constraint factor[J]. Application Research of Computers, 2015, 32(12):3626-3628, 3653(in Chinese).
[14] 肖理庆, 王化祥, 邵晓根. 基于模型细化改进牛顿-拉夫逊图像重建算法[J]. 仪器仪表学报, 2014, 35(7):1546-1554.
Xiao Liqing, Wang Huaxiang, Shao Xiaogen. Improved Newton-Raphson image reconstruction algorithm based on model refining[J]. Chinese Journal of Scientific Instrument, 2014, 35(7):1546-1554(in Chinese).
[15] 何为, 罗辞勇, 徐征, 等. 电阻抗成像原理[M]. 北京:科学出版社, 2009.
He Wei, Luo Ciyong, Xu Zheng, et al. Principle of Electrical Impedance Tomography[M]. Beijing:Science Press, 2009(in Chinese).
[16] Xue Qian, Wang Huaxiang, Cui Ziqiang, et al. Electrical capacitance tomography using an accelerated proximal gradient algorithm[J]. Review of Scientific Instruments, 2012, 83(4):1-7.

相似文献/References:

[1]许燕斌,王化祥,崔自强.水平管气水两相流分相界面识别[J].天津大学学报(自然科学版),2010,(08):743.
 XU Yan-bin,WANG Hua-xiang,CUI Zi-qiang.Phase Interface Identification of Gas/Water Two-Phase Flow in Horizontal Pipe[J].Journal of Tianjin University,2010,(01):743.
[2]崔自强,王化祥,许燕斌,等. 双截面电阻层析成像系统设计[J].天津大学学报(自然科学版),2010,(02):115.
 CUI Zi-qiang,WANG Hua-xiang,XU Yan-bin,et al. Design of Twin-Plane Electrical Resistance Tomography System[J].Journal of Tianjin University,2010,(01):115.
[3]姜常珍,孙永进,徐立军. 电阻层析成像激励电极加权研究[J].天津大学学报(自然科学版),2002,(03):348.
 [J].Journal of Tianjin University,2002,(01):348.
[4]董峰,乔旭彤,姜之旭,等.应用电阻层系成像技术测量垂直管道气/液两相流分相含率[J].天津大学学报(自然科学版),2004,(06):510.
[5]张玲玲,等. 基于1范数的电阻层析成像图像重建算法[J].天津大学学报(自然科学版),2011,(09):786.
 ZHANG Ling-ling,WANG Hua-xiang,FAN Wen-ru. Image Reconstruction Algorithm Based on 1-norm for Electrical Resistance Tomography[J].Journal of Tianjin University,2011,(01):786.
[6]李守晓,王化祥,范文茹,等.基于三维模型的改进正则化ERT 成像算法[J].天津大学学报(自然科学版),2012,(03):205.
 LI Shou-xiao,WANG Hua-xiang,FAN Wen-ru,et al.Improved Regularization Reconstruction Algorithm Based[J].Journal of Tianjin University,2012,(01):205.
[7]肖理庆. 电阻层析成像有限元模型优化[J].天津大学学报(自然科学版),2014,(01):54.[doi:10.11784/tdxbz201210020]
 Xiao Liqing,Wang Huaxiang. Optimization of Finite Element Model for ElectricalResistance Tomography[J].Journal of Tianjin University,2014,(01):54.[doi:10.11784/tdxbz201210020]
[8]董 峰,等. 用于电阻层析成像的快速自适应硬阈值迭代算法[J].天津大学学报(自然科学版),2015,(04):305.[doi:10.11784/tdxbz201309076]
 Dong Feng,Zhao Jia,et al. A Fast Adaptive Iterative Hard Threshold Algorithm for Electrical Resistance Tomography[J].Journal of Tianjin University,2015,(01):305.[doi:10.11784/tdxbz201309076]
[9]肖理庆.一种改进牛顿-拉夫逊ERT 绝对图像重建算法[J].天津大学学报(自然科学版),2015,(08):734.[doi:10.11784/tdxbz201402019]
 Xiao Liqing,A Modified Newton-Raphson Absolute Image Reconstruction Algorithm for ERT[J].Journal of Tianjin University,2015,(01):734.[doi:10.11784/tdxbz201402019]

备注/Memo

备注/Memo:
收稿日期: 2016-07-29; 修回日期: 2016-09-06.
作者简介: 肖理庆(1981—), 男, 博士, 副教授, lqx1981@tju.edu.cn.
通讯作者: 王化祥, hxwang@tju.edu.cn.
网络出版时间: 2016-09-22.网络出版地址: http://www.cnki.net/kcms/detail/12.1127.N.20160922.1443.012.html.
基金项目: 国家自然科学基金青年科学基金资助项目(61302122, 61401466); 江苏省高校自然科学研究面上项目(15KJB520033,
16KJB470017, 17KJB510053); 安徽省高校优秀青年人才支持计划项目(gxyq2017060).
Supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.,61302122 and No.,61401466), Project of Natural Scince Research in Universities in Jiangsu(No.,15KJB520033, No.,16KJB470017 and No.,17KJB510053), and Outstanding Youth Talent Support Program in Anhui University(No.,gxyq2017060).
更新日期/Last Update: 2018-01-10