|本期目录/Table of Contents|

[1]谢生,谷由之,毛陆虹,等.基于SiGe BiCMOS工艺的高速光接收机模拟前端电路[J].天津大学学报(自然科学版),2018,(01):57-63.[doi:10.11784/tdxbz201612053]
 Xie Sheng,Gu Youzhi,Mao Luhong,et al.Analog Front-End Circuit for High-Speed Optical Receiver Based on SiGe BiCMOS Technology[J].Journal of Tianjin University,2018,(01):57-63.[doi:10.11784/tdxbz201612053]
点击复制

基于SiGe BiCMOS工艺的高速光接收机模拟前端电路()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年01
页码:
57-63
栏目:
出版日期:
2018-01-08

文章信息/Info

Title:
Analog Front-End Circuit for High-Speed Optical Receiver Based on SiGe BiCMOS Technology
文章编号:
0493-2137(2018)01-0057-07
作者:
谢生1 谷由之1 毛陆虹2 吴思聪1 高谦1
1. 天津大学微电子学院天津市成像与感知微电子技术重点实验室,天津 300072;2. 天津大学电气自动化与信息工程学院,天津 300072
Author(s):
Xie Sheng1 Gu Youzhi1 Mao Luhong2 Wu Sicong1 Gao Qian1
1. Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China
2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
关键词:
光接收机 跨阻放大器 改进型Cherry-Hooper 直流偏移消除电路 锗硅双极-互补金属-氧化物-半导体
Keywords:
optical receiver transimpedance amplifier modified Cherry-Hooper DC offset cancellation circuit SiGe BiCMOS
分类号:
TN433
DOI:
10.11784/tdxbz201612053
文献标志码:
A
摘要:
基于IBM 0.18 ?m SiGe BiCMOS工艺, 设计了一款12.5 Gb/s的全差分光接收机模拟前端电路.该电路由跨阻放大器、限幅放大器、直流偏移消除电路和输出缓冲级组成.为获得更高的带宽, 本文对Cherry-Hooper结构进行了改进, 设计出一种三级级联的限幅放大器, 而直流偏移消除电路则使用了差分有源密勒电容(DAMC)来替代传统的片外大电容, 提高了电路集成度和稳定性.版图后仿结果表明, 在探测器等效电容为300 fF的情况下, 光接收机前端电路的跨阻增益为97 dB, -3 dB带宽为11.7 GHz, 等效输入噪声电流小于14.2 pA/, 芯片核心面积为720 ?m×700 ?m.
Abstract:
A fully differential analog front-end circuit for 12.5 Gb/s optical receiver was optimally designed with IBM 0.18 ?m SiGe BiCMOS technology,which included transimpedance amplifier(TIA),limiting amplifier(LA),DC offset cancellation(DOC)circuit and output buffer. To obtain wider bandwidth,the Cherry-Hooper structure was modified,and a cascaded limiting amplifier with three-stage Cherry-Hooper structures was proposed. Additionally,the DOC circuit adopted a differential active Miller capacitor(DAMC)to replace the traditional large off-chip capacitors,which was beneficial for improving the integration level and stability. Post-layout simulation results showed that the optical receiver front-end circuit had a -3 dB bandwidth of 11.7 GHz with a transimpedance gain of 97 dB while using a photodiode equivalent capacitance of 300 fF. The equivalent input noise current was less than 14.2 pA/ within the interesting band,and the size of core chip was 720 ?m×700 ?m.

参考文献/References:

[1] Youn J S, Lee M J, Park K Y, et al. A 12. 5-Gb/s SiGe BiCMOS optical receiver with a monolithically integrated 850-nm avalanche photodetector[C]// Optical Fiber Communication Conference. Los Angeles, California, USA, 2012:1-3.
[2] Toru Y, Toshiaki T, Norio C, et al. A 20 Gbps inductorless CMOS optical receiver for short distance VCSEL based 850 nm optical links[J]. Analog Integrated Circuits and Signal Processing, 2014, 78(1):43-51.
[3] Oh W S, Park K. A 12-Channel 60-Gb/s transimpedance amplifier and limiting amplifier array for OPCB applications[C]//IEEE International Conference on Electronics. Marrakech, Morocco, 2008:22-25.
[4] Xie Sheng, Guo Jing, Guan Kun, et al. Design and realization of InP/AlGaInAs multiple quantum well ring laser[J]. Transactions of Tianjin University, 2014, 20(6):402-406.
[5] Huang J C, Lai K S, Hsu K Y J. A 10. 5 Gb/s transimpedance amplifier using capacitive emitter degeneration technique[J]. Solid-State Electronics, 2009, 53(8):
916-919.
[6] Moeneclaey B, Verbrugghe J, Blache F, et al. A 40 Gb/s transimpedance amplifier for optical links[J]. IEEE Photonics Technology Letters, 2015, 27(13):1375-1378.
[7] Brandl P, Zimmermann H. 3 Gbit/s optical receiver IC with high sensitivity and large integrated pin photodiode [J]. Electronics Letters, 2013, 49(8):552-554.
[8] Eissa M H, Awny A, Winzer G, et al. A wideband monolithically integrated photonic receiver in 0.25 ?m SiGe:C BiCMOS technology[C]// European Solid-State Circuits Conference. Lausanne, Switzerland, 2016:487-490.
[9] Xie Sheng, Tao Xizi, Mao Luhong, et al. A high-Gm differential regulated cascode transimpedance amplifier [J]. Transactions of Tianjin University, 2016, 22(4):345-351.
[10] Kang Y Z, Mao L H, Zhang S L, et al. A 13 GHz 38 mW differential front-end amplifier based on 0.18 μm SiGe BiCMOS for 15 Gb/s optical receiver [C] // IEEE International Conference on Solid-State and Integrated Circuit Technology. Xi’an, China, 2012:1-3.
[11] Chen L, Li Z, Wang Z. A 10-Gb/s Inductorless CMOS limiting amplifier for optic-fiber transmission system [C]// IEEE Photonics and Optoelectronic. Chengdu, China, 2010:1-4.
[12] Holdenried C D, Haslett J W, Lynch M W. Analysis and design of HBT Cherry-Hooper amplifiers with emitter-follower feedback for optical communications[J]. IEEE Journal of Solid-State Circuits, 2004, 39(11):1959-1967.
[13] Huang H Y, Chien J C, Lu L H. A 10-Gb/s inductor-less CMOS limiting amplifier with third-order interleaving active feedback[J]. IEEE Journal of Solid-State Circuits, 2007, 42(5):1111-1120.

相似文献/References:

[1]谢生,高谦,毛陆虹,等.2.5 Gb/s低噪声差分交叉耦合跨阻放大器的设计与实现[J].天津大学学报(自然科学版),2017,(06):656.[doi:10.11784/tdxbz201605045]
 Xie Sheng,Gao Qian,Mao Luhong,et al.A Novel 2.5 Gb/s Low Noise Differential Cross-Coupled Transimpedance Amplifier[J].Journal of Tianjin University,2017,(01):656.[doi:10.11784/tdxbz201605045]

备注/Memo

备注/Memo:
收稿日期: 2016-12-20; 修回日期: 2017-05-25.
作者简介: 谢生(1978—), 男, 博士, 副教授.
通讯作者: 谢生, xie_sheng06@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(61474081).
Supported by the National Nature Science Foundation of China(No.,61474081).
更新日期/Last Update: 2018-01-10