|本期目录/Table of Contents|

[1]李传玺,张婷,郭凯,等.基于流路设计的斜隔板引流喷射换热器研究[J].天津大学学报(自然科学版),2018,(01):41-49.[doi:10.11784/tdxbz201701029]
 Li Chuanxi,Zhang Ting,Guo Kai,et al.Heat Exchanger with Inclined Plate and High-Pressure Spray Based on Flow Field Design[J].Journal of Tianjin University,2018,(01):41-49.[doi:10.11784/tdxbz201701029]
点击复制

基于流路设计的斜隔板引流喷射换热器研究()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年01
页码:
41-49
栏目:
出版日期:
2018-01-08

文章信息/Info

Title:
Heat Exchanger with Inclined Plate and High-Pressure Spray Based on Flow Field Design
文章编号:
0493-2137(2018)01-0041-09
作者:
李传玺12 张婷12 郭凯12 尹海蛟12 刘辉12 刘春江12
1. 天津大学化工学院,天津 300350;2. 化学工程联合国家重点实验室(天津大学),天津 300350
Author(s):
Li Chuanxi12 Zhang Ting12 Guo Kai12 Yin Haijiao12 Liu Hui12 Liu Chunjiang12
1.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2.State Key Laboratory of Chemical Engineering(Tianjin University), Tianjin 300350, China
关键词:
管壳式换热器 换热强化 壳程蒸汽冷凝 三维模型的流体力学模拟
Keywords:
shell-and-tube heat exchanger heat transfer enhancement steam condensation in shell side computational fluid dynamics simulation for 3D model
分类号:
TK172
DOI:
10.11784/tdxbz201701029
文献标志码:
A
摘要:
为提高原油加热等壳程蒸汽冷凝换热工况的换热效果, 本文基于流路设计提出了一种斜隔板层间引流喷射型换热器, 并采用数值模拟方法进行分析.分别探究了斜隔板倾角、进口流速、层间引流喷射、换热单元层数对换热性能的影响, 获得了换热器综合性能(JF因子)与倾斜角、进口流速的经验关联式.结果表明:壳程斜隔板结构能够提高换热器的JF因子, 且倾斜角和进口流速的适当增大有利于换热器性能的提高; 多段引流喷射能利用进料气引流上一层的乏汽, 提高上层乏汽热品位; 斜隔板引流喷射结构放大效应小, 有利于工业生产.
Abstract:
In this study,a heat exchanger with inclined plate and high-pressure spray is proposed based on flow field design to improve the beat transfer performance of steam condensation in shell side in such conditions as heating the crude oil. The heat transfer process within the heat exchanger was simulated by applying computational fluid dynamics(CFD) technique. The effect of inclination angle,inlet velocity,high-pressure spray,and number of layers on the heat transfer performance was tested,respectively. Empirical equations that reveal the function relationship between the heat transfer performance(JF factor)and inclination angle as well as inlet velocity were obtained. Results show that the inclined plate can enhance the heat transfer performance,which improves with the increasing of inclination angle degree and inlet velocity. The high-pressure spray can drain the dead stream from the upper layer and increase its quality. The new structure shows little scale effect, which is conducive to industrial production.

参考文献/References:

[1] 王明军. 管壳式换热器的数值模拟与优化设计[D]. 长沙:中南大学热能科学与工程学院, 2011.
Wang Mingjun. Numerical Simulation and Optimization of the Shell-and-Tube Exchanger[D]. Changsha:School of Energy Science and Engineering, Center South University, 2011(in Chinese).
[2] 杨俊兰, 马一太, 俞颐秦. 绕花丝内插物强化凝结换热实验研究[J]. 天津大学学报, 2004, 37(11):990-995.
Yang Junlan, Ma Yitai, Yu Yiqin. Experimental study of condensation heat transfer enhancement by twined coil inserts[J]. Journal of Tianjin University, 2004, 37(11):990-995(in Chinese).
[3] Bergles A E. The implications and challenges of enhanced heat transfer for the chemical process industries [J]. Chemical Engineering Research & Design, 2001, 79(4):437-444.
[4] 贺美玲, 孙亚茹. 管壳式换热器传热传质特性研究综述[J]. 内蒙古石油化工, 2015, 41(15):25-26.
He Meiling, Sun Yaru. Review of the study of shell-and-tube heat exchanger characteristic[J]. Inner Mongolia Petrochemical Industry, 2015, 41(15):25-26 (in Chinese).
[5] Alhusseny A, Turan A. An effective engineering computational procedure to analyse and design rotary regenerators using a porous media approach[J]. International Journal of Heat & Mass Transfer, 2016, 95(2):593-605.
[6] 余德渊. 换热器技术发展综述[J]. 化工炼油机械, 1984, 13(1):1-8.
Yu Deyuan. An overview on developments in heat exchanger technology[J]. Petro-Chemical Equipment, 1984, 13(1):1-8(in Chinese).
[7] 钱伯章. 换热器节能技术与应用综述(上篇)[J]. 石油和化工节能, 2015(4):28-35.
Qian Bozhang. Review of the heat exchanger energy saving technology and application(part one)[J]. Petroleum & Chemical Energy Conservation, 2015(4):28-35(in Chinese).
[8] Alhusseny A, Turan A, Nassera A. An effective engineering computational procedure to analyse and design rotary regenerators using a porous media approach[J]. International Journal of Heat and Mass Transfer, 2016, 95(2):593-605.
[9] Yildiz C, Bí?er Y, Pehlivan D. Effect of twisted strips on heat transfer and pressure drop in heat exchangers[J]. Energy Convers Manag, 1998, 39(3/4):331-336.
[10] Ali A, Vafai K, Khaled A R A. Comparative study between parallel and counter flow configurations between air and falling film desiccant in the presence of nanoparticle suspensions[J]. International Journal of Energy Research, 2003, 27(8):725-745.
[11] Ali A, Vafai K, Khaled A R A. Analysis of heat and mass transfer between air and falling film in a cross flow configuration[J]. International Journal of Heat & Mass Transfer, 2004, 47(4):743-755.
[12] Alkam M K, Al-Nimr M A. Improving the performance of double-pipe heat exchangers by using porous substrates[J]. International Journal of Heat & Mass Transfer, 1999, 42(19):3609-3618.
[13] Targui N, Kahalerras H. Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures[J]. Energy Convers Manag, 2008, 49(11):3217-3229.
[14] 原平方, 张婷, 齐文哲, 等. 涡流发生器强化传热的数值模拟[J]. 天津大学学报:自然科学与工程技术版, 2017, 50(1):84-90.
Yuan Pingfang, Zhang Ting, Qi Wenzhe, et al. Numerical simulation of vortex generator on heat transfer enhancement[J]. Journal of Tianjin University:Science and Technoogy, 2017, 50(1):84-90(in Chinese).
[15] 肖晓明. 螺旋折流板换热器流动与传热耦合计算模型[D]. 天津:天津大学化工学院, 2014.
Xiao Xiaoming. The Flow and Heat Transfer Coupled Calculation Model for Helical Baffled Heat Exchangers [D]. Tianjin:School of Chemical Engineering and Technology, Tianjin University, 2014(in Chinese).
[16] 张宇. 国内外螺旋折流板换热器技术创新综述[J]. 石油和化工设备, 2015, 18(10):94-96.
Zhang Yu. Review of the innovation of the spiral baffle plate heat exchanger technology at home and abroad[J]. Petro & Chemical Equipment, 2015, 18(10):94-96(in Chinese).
[17] Browne M W, Bansal P K. Overview of condensation heat transfer on horizontal tube bundles[J]. Applied Thermal Engineering, 1999, 19(6):565-594.
[18] Wang Q, Chen G, Chen Q, et al. Review of improvements on shell-and-tube heat exchangers with helical baffles[J]. Heat Transfer Engineering, 2010, 31(10):836-853.
[19] Pettigrew M J, Rogers R J, Axisa F. Damping of heat exchanger tubes in liquids:Review and design guidelines[J]. Journal of Pressure Vessel Technology, 2011, 133(1):549-554.
[20] Huminic G, Huminic A. Application of nanofluids in heat exchangers:A review[J]. Renewable & Sustainable Energy Reviews, 2012, 16(8):5625-5638.
[21] 刘春江, 阮仁君, 郭凯, 等. 矩形通道中涡流发生器换热性能的实验研究与模拟[J]. 天津大学学报:自然科学与工程技术版, 2017, 50(1):71-76.
Liu Chunjiang, Ruan Renjun, Guo Kai, et al. Experimentand simulation study of heat transfer in a rectangular channel with vortex generator[J]. Journal of Tianjin University:Science and Technology, 2017, 50(1):71-76(in Chinese).
[22] Nielsen T R, Rose J, Kragh J. Dynamic model of counter flow air to air heat exchanger for comfort ventilation with condensation and frost formation[J]. Applied Thermal Engineering, 2009, 29(2/3):462-468.
[23] 范伟. 管壳式换热器凝结换热特性的研究及数值计算[D]. 保定:华北电力大学能源动力及工程学院, 2009.
Fan Wei. Investigation and Numerical Calculation of Condensation Heat Transfer of Shell-and-Tube Heat Exchanger[D]. Baoding:School of Energy, Power and Mechanical Engineering, North China Electric Power University, 2009(in Chinese).
[24] 思勤, 刘昌俊, 黄鸿鼎. 折流杆冷凝器壳侧混合蒸汽冷凝传热研究[J]. 化工学报, 1990, 41(4):403-411.
Si Qin, Liu Changjun, Huang Hongding. Research of the mixed steam condensation heat transfer in the shell
side of baffle rod condenser[J]. Journal of Chemical Industry and Engineering(China), 1990, 41(4):403-411(in Chinese).
[25] 胡琼. 管壳式换热器冷凝传热研究与数值模拟[D].
武汉:华中科技大学化学与化工学院, 2011.
Hu Qiong. Investigation and Numerical Simulation on Condensation Heat Transfer of Shell-and-Tube Heat Exchanger[D]. Wuhan:School of Chemical Engineering and Technology, Huazhong University of Science and Technology (in Chinese).
[26] Fernández F J, Prieto M M. Study of aerosol behaviour in filmwise condensation processes with the presence of inert gas[J]. International Journal of Heat & Mass Transfer, 2016, 93:1059-1071.
[27] Kim N H. Condensation of R-134 a on horizontal enhanced tubes having three-dimensional roughness[J]. International Journal of Air-Conditioning and Refrigeration, 2016, 24(2):1650013.
[28] Dalkilic A S, Acikgoz O, Tapan S, et al. Fundamental basis and implementation of shell-and-tube heat exchanger project design:Condenser and evaporator study [J]. Heat & Mass Transfer, 2016, 52(12):1-16.
[29] 张婷, 齐文哲, 阮仁君, 等. 基于系统经济优化的换热器设计[J]. 天津大学学报:自然科学与工程技术版, 2016, 49(6):589-596.
Zhang Ting, Qi Wenzhe, Ruan Renjun, et al. Heat exchanger design based on systematic economic optimization[J]. Journal of Tianjin University:Science and Technology, 2016, 49(6):589-596(in Chinese).
[30] Yun J Y, Lee K S. Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit fins[J]. International Journal of Heat & Mass Transfer, 2000, 43(14):2529-2539.

相似文献/References:

[1]杨俊兰,马一太,俞颐秦.绕花丝内插物强化凝结换热实验研究[J].天津大学学报(自然科学版),2004,(11):990.

备注/Memo

备注/Memo:
收稿日期: 2017-01-24; 修回日期: 2017-05-03.
作者简介: 李传玺(1993—), 男, 博士研究生, molakirlee@tju.edu.cn.
通讯作者: 郭凯, guokaitianjin@163.com.
网络出版时间: 2017-05-27.网络出版地址: http://kns.cnki.net/kcms/detail/12.1127.N.20170527.0938.002.html.
基金项目: 国家自然科学基金资助项目(21406157); 中国博士后科学基金资助项目(2016M601263).
Supported by the National Natural Science Foundation of China(No.,21406157) and the China Postdoctoral Science Foundation
(No.,2016M601263).
更新日期/Last Update: 2018-01-10