|本期目录/Table of Contents|

[1]李振花,谢春芳,王玮涵,等.耐硫甲烷化催化剂的成型工艺探究[J].天津大学学报(自然科学版),2018,(01):18-26.[doi:10.11784/tdxbz201702054]
 Li Zhenhua,Xie Chunfang,Wang Weihan,et al.Forming Process of Sulfur-Resistant Methanation Catalysts[J].Journal of Tianjin University,2018,(01):18-26.[doi:10.11784/tdxbz201702054]
点击复制

耐硫甲烷化催化剂的成型工艺探究()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年01
页码:
18-26
栏目:
出版日期:
2018-01-08

文章信息/Info

Title:
Forming Process of Sulfur-Resistant Methanation Catalysts
文章编号:
0493-2137(2018)01-0018-09
作者:
李振花12 谢春芳12 王玮涵12 王保伟12 马新宾12
1. 绿色合成与转化教育部重点实验室,天津 300350;2. 天津大学化工学院,天津 300350
Author(s):
Li Zhenhua12 Xie Chunfang12 Wang Weihan12 Wang Baowei12 Ma Xinbin12
1. Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin 300350, China
2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
关键词:
耐硫甲烷化 铈铝复合载体 钼基催化剂 催化剂成型
Keywords:
sulfur-resistant methanation CeO2-Al2O3 composite support Mo-based catalyst catalyst formation
分类号:
TQ5
DOI:
10.11784/tdxbz201702054
文献标志码:
A
摘要:
采用挤出法对CeO2-Al2O3载体和MoO3/ZrO2催化剂进行了成型处理并研究了成型工艺对高温、低温催化剂耐硫甲烷化性能的影响, 考察了不同成型助剂对负载型Mo基催化剂成型效果和耐硫甲烷化活性的影响, 并对所制备的成型催化剂进行稳定性考察.结果表明, 铈铝复合载体的适宜成型条件是水粉质量比约0.45~0.55、黏合剂为10% (质量分数, 下同)的拟薄水铝石, 胶溶剂为10% 的硝酸, 润滑剂为1% 的田菁粉; MoO3/ZrO2低温催化剂的成型工艺条件是拟薄水铝石添加量为10% , 硝酸添加量为5% , 田菁粉添加量为1% .在此条件下制备的高温和低温成型催化剂均具有良好的稳定性, 这为耐硫甲烷化催化剂的工业放大研制提供了重要依据.
Abstract:
The CeO2-Al2O3 composite support and MoO3/ZrO2 catalyst were formed by extrusion method and the effect of forming process on the sulfur-resistant methanation performance of both high temperature catalyst and low temperature catalyst was studied. The effects of different additives on the forming process of Mo-based catalysts and sulfur-resistant methanation activity were investigated. The stability of the prepared catalyst was tested. The results showed that the optimum forming conditions of CeO2-Al2O3 composite support were as follows: powder/water mass ratio of 0.45—0.55 with 10% pseudo-boehmite as a binder,10% nitric acid as a peptizer and 1% sesbania powder as a lubricant. The optimum forming conditions of MoO3/ZrO2 catalyst were: 10% pseudo-boehmite,5% nitric acid and 1% sesbania powder. The results indicated that both the high temperature catalyst and low temperature catalyst prepared under the optimum conditions were stable during the reaction process,which provides important basis for scale-up production of sulfur-resistant methanation catalyst for industrial application.

参考文献/References:

[1] Kopyscinski J, Schildhauer T J, Biollaz S M A. Production of synthetic natural gas(SNG)from coal and dry biomass—A technology review from 1950 to 2009[J]. Fuel, 2010, 89(8):1763-1783.
[2] 冯亮杰. 我国发展煤制天然气项目的分析探讨[J]. 化学工程, 2011, 39(8):86-89.
Feng Liangjie. Analysis and discussion on development of coal-to-natural gas project in China[J]. Chemical Engineering(China), 2011, 39(8):86-89(in Chinese).
[3] 穆仕芳, 尚如静, 魏灵朝, 等. 我国甲醇汽油的研究与应用现状及前景分析[J]. 天然气化工, 2012, 37(1):25-29.
Mu Shifang, Shang Rujing, Wei Lingchao, et al. Research and application status and prospect of methanol gasoline in China[J]. Natural Gas Chemical Industry, 2012, 37(1):25-29(in Chinese).
[4] 安建生, 李小定, 李新怀. 煤制天然气高CO甲烷化的研究进展[J]. 化工设计通讯, 2012, 38(2):13-16.
An Jiansheng, Li Xiaoding, Li Xinhuai. Research and progress on high CO methanation in SNG process[J]. Chemical Engineering Design Communications, 2012, 38(2):13-16(in Chinese).
[5] Okamoto Y, Ochiai K, Kawano M, et al. Effects of support on the activity of Co-Mo sulfide model catalysts [J]. Applied Catalysis A:General, 2002, 226(1):115-127.
[6] 张洋洋, 段艳慧, 刘欣, 等. 煤制天然气技术现状及项目进展[J]. 化肥工业, 2016, 43(5):41-43.
Zhang Yangyang, Duan Yanhui, Liu Xin, et al. Technical status and project progress of coal-based synthetic natural gas[J]. Journal of Chemical Fertilizer Industry, 2016, 43(5):41-43(in Chinese).
[7] Li Z H, Tian Y, He J, et al. High CO methanation activity on zirconia-supported molybdenum sulfide catalyst[J]. Journal of Energy Chemistry, 2014, 23(5):625-632.
[8] Jiang M H, Wang B W, Yao Y Q, et al. Effect of stepwise sulfidation on a MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation[J]. Applied Catalysis A:General, 2014, 469(2):89-97.
[9] 苏玉蕾, 何丰, 李华波. 催化剂成型工艺及技术研究[J]. 工业催化, 2013, 21(4):11-15.
Su Yulei, He Feng, Li Huabo. Research on forming conditions and technology of the catalysts[J]. Industrial Catalysis, 2013, 21(4):11-15(in Chinese).
[10] 周治峰. 固体催化剂成型工艺的研究进展[J]. 辽宁化工, 2015, 44(2):155-157.
Zhou Zhifeng. Research process in molding methods of solid catalysts[J]. Liaoning Chemical Industry, 2015, 44(2):155-157(in Chinese).
[11] 刘国清, 匡继刚, 吴剑, 等. 挤条成型TS-1分子筛催化剂制备及性能表征[J]. 化学反应工程与工艺, 2010, 26(1):42-46.
Liu Guoqing, Kuang Jigang, Wu Jian, et al. Synthesis and characterization of extruded titanium silicate-1 and its catalysis performance in cyclohexanone ammo-ximation[J]. Chemical Reaction Engineering and Technology, 2010, 26(1):42-46(in Chinese).
[12] 李建伟, 李成岳. C302铜基甲醇合成催化剂颗粒设计Ⅰ. 颗粒结构对催化剂宏观活性的影响[J]. 燃料化学学报, 2002, 30(5):463-467.
Li Jianwei, Li Chengyue. Pellet design of C302 Cu-based catalyst for methanol synthesis I. Effect of pellet structure parameters on global reaction rate[J]. Journal of Fuel Chemistry and Technology, 2002, 30(5):463-467(in Chinese).
[13] 史建文, 李大东, 薛用芳, 等. 挤出成型过程中的各种因素对氧化铝载体物性的影响[J]. 石油化工, 1985, 14(6):3-4, 14-20.
Shi Jianwen, Li Dadong, Xue Yongfang, et al. Effect of extrusion parameters on physical properties of Al2O3[J]. Petrochemical, 1985, 14(6):3-4, 14-20(in Chinese).
[14] Qiao W, Korai Y, Mochida I, et al. Preparation of an activated carbon artifact:Factors influencing strength when using a thermoplastic polymer as binder[J]. Carbon, 2001, 39(15):2355-2368.
[15] 关翀, 王林, 张伟, 等, 硝酸胶溶剂对ZSM-5甲醇制丙烯催化性能的影响[J]. 化工技术与开发, 2013, 42(10):10-12.
Guan Chong, Wang Lin, Zhang Wei, et al. Effect of nitric acid peptizator on catalytic activity of ZSM-5 molecular sieve for methanol to propylene[J]. Technology and Development of Chemical Industry, 2013, 42(10):10-12(in Chinese).
[16] 余海清, 李建伟, 孙晓岩, 等. 硝酸胶溶剂对MCM-22分子筛催化剂性能的影响[J]. 北京化工大学学报, 2008, 35(4):24-28.
Yu Haiqing, Li Jianwei, Sun Xiaoyan, et al. Effect of nitric acid peptizator on the performance of a MCM-22 zeolite catalyst[J]. Journal of Beijing University of Chemical Technology, 2008, 35(4):24-28(in Chinese).
[17] Dong M J, Mao X J, Zhang Z Q, et al. Gelcasting of zirconia using water soluble epoxy resin as gel former [J]. Journal of the Chinese Ceramic Society, 2008, 36(7):1000-1003.
[18] 王传创, 刘银, 朱岩岩, 等. 氧化锆陶瓷注凝成型工艺研究进展[J]. 材料导报, 2015(增2):90-95.
Wang Chuanchuang, Liu Yin, Zhu Yanyan, et al. Research progress on gel-casting of zirconia ceramic[J]. Materials Review, 2015(Suppl 2):90-95(in Chinese).
[19] 王传创, 刘银, 朱岩岩, 等. 氧化锆陶瓷注凝成型浆料流变性研究[J]. 硅酸盐通报, 2016, 35(4):1235-1239.
Wang Chuanchuang, Liu Yin, Zhu Yanyan, et al. Rheology behavior of suspension of zirconia ceramic by gel-casting[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(4):1235-1239(in Chinese).
[20] 谢志鹏, 刘伟, 高卫民, 等. 氧化锆生物陶瓷牙桩的快速注射成型制备研究[J]. 陶瓷学报, 2012, 33(2):123-126.
Xie Zhipeng, Liu Wei, Gao Weimin, et al. Fabrication of novel dental post via rapid injection molding[J]. Journal of Ceramics, 2012, 33(2):123-126(in Chinese).
[21] 徐俊, 王昭晖, 宋月芹, 等. 成型工艺条件对Pt/SO42-/ZrO2催化剂异构化性能的影响[J]. 石油炼制与化工, 2016, 47(1):32-38.
Xu Jun, Wang Zhaohui, Song Yueqin, et al. Effect of extrusion conditions on isomerization performance of Pt/SO42-/ZrO2 catalyst[J]. Petroleum Processing and Petrochemicals, 2016, 47(1):32-38(in Chinese).

备注/Memo

备注/Memo:
收稿日期: 2017-02-25; 修回日期: 2017-04-12.
作者简介: 李振花(1966—), 女, 博士, 研究员, zhenhua@tju.edu.cn.
通讯作者: 王玮涵, wangwh@tju.edu.cn; 马新宾, xbma@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(21576203); 国家高技术研究发展计划(863计划)资助项目(2015AA050504).
Supported by the National Natural Science Foundation of China(No.,21576203)and the National High Technology Research and Development Program of China(No.,2015AA050504).
更新日期/Last Update: 2018-01-10