|本期目录/Table of Contents|

[1]苏荣欣,陈眯眯,黄仁亮,等.木质纤维素薄膜制备与酶解过程的QCM-D分析[J].天津大学学报(自然科学版),2018,(01):1-8.[doi:10.11784/tdxbz201702030]
 Su Rongxin,Chen Mimi,Huang Renliang,et al.QCM-D Analysis of Film Formation and Enzymatic Hydrolysis of Lignocellulose[J].Journal of Tianjin University,2018,(01):1-8.[doi:10.11784/tdxbz201702030]
点击复制

木质纤维素薄膜制备与酶解过程的QCM-D分析()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2018年01
页码:
1-8
栏目:
出版日期:
2018-01-08

文章信息/Info

Title:
QCM-D Analysis of Film Formation and Enzymatic Hydrolysis of Lignocellulose
文章编号:
0493-2137(2018)01-0001-08
作者:
苏荣欣1234 陈眯眯12 黄仁亮12 齐崴1234 王梦凡12 何志敏12
1. 天津大学化工学院,天津 300350;2. 化学工程联合国家重点实验室(天津大学),天津 300350;3. 天津化学化工协同创新中心,天津 300350;4. 天津市膜科学与海水淡化技术重点实验室,天津 300072
Author(s):
Su Rongxin1234 Chen Mimi12 Huang Renliang12 Qi Wei1234 Wang Mengfan12 He Zhimin12
1.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2.State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, China
3.Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300350, China
4.Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, China
关键词:
木质纤维素 纤维素酶 石英晶体微天平 吸附 水解
Keywords:
lignocellulose cellulase QCM-D film adsorption hydrolysis
分类号:
Q64
DOI:
10.11784/tdxbz201702030
文献标志码:
A
摘要:
耗散型石英晶体微天平(QCM-D)是基于石英晶体的压电效应对其电极表面质量变化进行测量的仪器, 已被证明是一种高灵敏的在线表界面过程分析工具.本文综述了近年来木质纤维素薄膜制备及应用QCM-D研究其酶解过程的分析进展, 分别从薄膜制备、纤维素酶吸附(纤维素、木质素、混合底物)、酶解历程分析、动力学建模等4个方面进行简要介绍.上述研究成果有助于理解纤维素酶与木质纤维素的相互作用规律, 为设计新型复配酶制剂、深刻理解纤维素酶解机制提供基础和指导.
Abstract:
Quartz crystal microbalance with dissipation(QCM-D)is an instrument used to measure the mass change of the electrode surface based on the piezoelectric effect of quartz crystal and has proved to be a highly sensitive online interface process analysis tool. This review summarizes the lignocellulose film preparation and the analysis progress of QCM-D in enzymatic hydrolysis in recent years. Four aspects,which include thin film preparation,cellulase adsorption onto cellulose,lignin,and lignocellulosic substrates,enzymatic hydrolysis analysis and dynamics modeling,are briefly introduced. The above research results help to understand the interaction characteristics between lignocellulose and cellulase,providing foundation and guidance for designing a new compounded enzyme system and a profound understanding of the mechanism of cellulose enzymatic hydrolysis.

参考文献/References:

[1] Sheridan C. Big oil turns on biofuels[J]. Nature Biotechnology, 2013, 31(10):870-873.
[2] Liao J C, Mi L, Pontrelli S, et al. Fuelling the future:Microbial engineering for the production of sustainable biofuels[J]. Nature Reviews Microbiology, 2016, 14(5):288-304.
[3] Somerville C, Bauer S, Brininstool G, et al. Toward a systems approach to understanding plant cell walls[J]. Science, 2004, 306(5705):2206-2211.
[4] Huang R L, Su R X, Qi W, et al. Bioconversion of lignocellulose into bioethanol:Process intensification and mechanism research[J]. Bioenergy Research, 2011, 4(4):225-245.
[5] Maurer S A, Bedbrook C N, Radke C J. Competitive sorption kinetics of inhibited endo-and exoglucanases on a model cellulose substrate[J]. Langmuir, 2012, 28(41):14598-14608.
[6] Mohan T, Niegelhell K, Zarth C S P, et al. Triggering protein adsorption on tailored cationic cellulose surfaces [J]. Biomacromolecules, 2014, 15(11):3931-3941.
[7] Zhang Y X, Rojas O J. Immunosensors for C-reactive protein based on ultrathin films of carboxylated cellulose nanofibrils[J]. Biomacromolecules, 2017, 18(2):526-534.
[8] Benselfelt T, Cranston E D, Ondaral S, et al. Adsorption of xyloglucan onto cellulose surfaces of different morphologies:An entropy-driven process[J]. Biomacromolecules, 2016, 17(9):2801-2811.
[9] Salas C, Rojas O J, Lucia L A, et al. On the surface interactions of proteins with lignin[J]. ACS Applied Materials & Interfaces, 2013, 5(1):199-206.
[10] Tham Y Y, Molino P J, Higgins M J, et al. The study of deposition of wood extractives and model compound colloids onto chromium and cellulose surfaces using quartz crystal microbalance with dissipation(QCM-D)[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2016, 491:1-11.
[11] Pasquini D, Balogh D T, Oliveira O N, et al. Lignin molecular arrangements in Langmuir and Langmuir-Blodgett films:The influence of extraction processes [J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2005, 252(2/3):193-200.
[12] Raegen A N, Reiter K, Dion A, et al. Advances in surface plasmon resonance imaging enable quantitative tracking of nanoscale changes in thickness and roughness [J]. Analytical Chemistry, 2014, 86(7):3346-3354.
[13] Quirk A, Lipkowski J, Vandenende C, et al. Direct visualization of the enzymatic digestion of a single fiber of native cellulose in an aqueous environment by atomic force microscopy[J]. Langmuir, 2010, 26(7):5007-5013.
[14] Maurer S A, Bedbrook C N, Radke C J. Cellulase adsorption and reactivity on a cellulose surface from flow ellipsometry[J]. Industrial & Engineering Chemistry Research, 2012, 51(35):11389-11400.
[15] Eriksson J, Malmsten M, Tiberg F, et al. Enzymatic degradation of model cellulose films[J]. Journal of Colloid & Interface Science, 2005, 284(1):99-106.
[16] Falt S, W?gberg L, Vesterlind E L, et al. Model films of cellulose ID—Improved preparation method and characterization of the cellulose film[J]. Cellulose, 2004, 11(2):151-162.
[17] Gunnars S, W?gberg L, Stuart M A C. Model ?lms of cellulose:I. Method development and initial results[J]. Cellulose, 2002, 9(3):239-249.
[18] Cheng G, Liu Z L, Murton J K, et al. Neutron reflectometry and QCM-D study of the interaction of cellulases with films of amorphous cellulose[J]. Biomacromolecules, 2011, 12(6):2216-2224.
[19] Cheng G, Datta S, Liu Z L, et al. Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and QCM-D[J]. Langmuir, 2012, 28(22):8348-8358.
[20] Vuoriluoto M, Orelma H, Zhu B, et al. Control of protein affinity of bioactive nanocellulose and passivation using engineered block and random copolymers[J]. ACS Applied Materials & Interfaces, 2016, 8(8):5668-5678.
[21] Pfeiffer K A, Sorek H, Roche C M, et al. Evaluating endoglucanase Cel7B-lignin interaction mechanisms and kinetics using quartz crystal microgravimetry[J]. Biotechnology & Bioengineering, 2015, 112(11):2256-2266.
[22] Ganner T, Rosker S, Eibinger M, et al. Tunable semicrystalline thin film cellulose substrate for high-resolution, in-situ AFM characterization of enzymatic cellulose degradation[J]. ACS Applied Materials & Interfaces, 2015, 7(50):27900-27909.
[23] Qin C R, Clarke K, Li K C. Interactive forces between lignin and cellulase as determined by atomic force microscopy[J]. Biotechnology for Biofuels, 2014, 7(1):65-74.
[24] Chen Q, Xu S M, Liu Q X, et al. QCM-D study of nanoparticle interactions[J]. Advances in Colloid & Interface Science, 2016, 233:94-114.
[25] Sauerbrey G. Verwendung von schwingquarzen zur w?gung dünner schichten und zur mikrow?gung[J]. Zeitschrift für Physik, 1959, 155(2):206-222.
[26] Rodahl M, Jonson M. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces:Continuum mechanics approach[J]. Physica Scripta, 1999, 59(9):391-396.
[27] Zhou S S, Li H F, Garlapalli R, et al. Hydrolysis of model cellulose films by cellulosomes:Extension of quartz crystal microbalance technique to multienzymatic complexes[J]. Journal of Biotechnology, 2017, 241:42-49.
[28] Orelma H, Filpponen I, Johansson L S, et al. Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules [J]. Biomacromolecules, 2011, 12(12):4311-4318.
[29] Lou H M, Wang M X, Lai H R, et al. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate[J]. Bioresource Technology, 2013, 146(10):478-484.
[30] Norgren M, Notley S M, Majtnerova A, et al. Smooth model surfaces from lignin derivatives. I. Preparation and characterization[J]. Langmuir, 2006, 22(3):1209-1214.
[31] Rahikainen J L, Martin-Sampedro R, Heikkinen H, et al. Inhibitory effect of lignin during cellulose bioconversion:The effect of lignin chemistry on non-productive enzyme adsorption[J]. Bioresource Technology, 2013, 133(2):270-278.
[32] Fritz C, Ferrer A, Salas C, et al. Interactions between cellulolytic enzymes with native, autohydrolysis, and technical lignins and the effect of a polysorbate amphiphile in reducing nonproductive binding[J]. Biomacromolecules, 2015, 16(12):3878-3888.
[33] Sammond D W, Yarbrough J M, Mansfield E, et al. Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity[J]. Journal of Biological Chemistry, 2014, 289(30):20960-20969.
[34] Kumagai A, Lee S H, Endo T. Evaluation of the effect of hot-compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance[J]. Biotechnology & Bioengineering, 2016, 113(7):1441-1447.
[35] Kumagai A, Iwamoto S, Lee S H, et al. Quartz crystal microbalance with dissipation monitoring of the enzymatic hydrolysis of steam-treated lignocellulosic nanofibrils[J]. Cellulose, 2014, 21(4):2433-2444.
[36] Kumagai A, Lee S H, Endo T. Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study[J]. Biomacromolecules, 2013, 14(7):2420-2426.
[37] Strasser S, Niegelhell K, Kaschowitz M, et al. Exploring nonspecific protein adsorption on lignocellulosic amphiphilic bicomponent films[J]. Biomacromolecules, 2016, 17(3):1083-1092.
[38] Ehmann H M A, Werzer O, Pachmajer S, et al. Surface-sensitive approach to interpreting supramolecular rearrangements in cellulose by synchrotron grazing incidence small-angle X-ray scattering[J]. ACS Macro Letters, 2015, 4(7):713-716.
[39] Hoeger I C, Filpponen I, Martin-Sampedro R, et al. Bicomponent lignocellulose thin films to study the role of surface lignin in cellulolytic reactions[J]. Biomacromolecules, 2012, 13(10):3228-3240.
[40] Martín-Sampedro R, Rahikainen J L, Johansson L S, et al. Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content[J]. Biomacromolecules, 2013, 14(4):1231-1239.
[41] Huang R L, Guo H, Su R X, et al. Enhanced cellulase recovery without beta-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant[J]. Biotechnology & Bioengineering, 2017, 114(3):543-551.
[42] Guo H, Zou S L, Liu B S, et al. Reducing beta-glucosidase supplementation during cellulase recovery using engineered strain for successive lignocellulose bioconversion[J]. Bioresource Technology, 2015, 187:362-368.
[43] 苏荣欣 杨仁俊, 齐崴, 等. 聚多巴胺辅助磁微球固定β-葡萄糖苷酶的制备与应用[J]. 天津大学学报:自然科学与工程技术版, 2017, 50(5):471-476.
Su Rongxin, Yang Renjun, Qi Wei, et al. Polydopamine-assisted preparation and application of magnetic immobilized β-Glucosidase[J]. Journal of Tianjin University:Science and Technology, 2017, 50(5):471-476(in Chinese).
[44] Su R X, Yang R J, Yang J F, et al. Oscillating cellulase adsorption and enhanced lignocellulose
hydrolysis upon ultrasound treatment[J]. Transactions of Tianjin University, 2016, 23(1):11-19.
[45] Maurer S A, Brady N W, Fajardo N P, et al. Surface kinetics for cooperative fungal cellulase digestion of cellulose from quartz crystal microgravimetry[J]. Journal of Colloid & Interface Science, 2013, 394(1):498-508.
[46] Nakagame S, Chandra R P, Kadla J F, et al. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin[J]. Biotechnology & Bioengineering, 2011, 108(3):538-548.
[47] Li M, Pu Y Q, Ragauskas A J. Current understanding of the correlation of lignin structure with biomass recalcitrance[J]. Frontiers in Chemistry, 2016, 4:1-8.
[48] Guo F F, Shi W J, Sun W, et al. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism[J]. Biotechnology for Biofuels, 2014, 7(1):1-10.
[49] Rahikainen J L, Evans J D, Mikander S, et al. Cellulase-lignin interactions:The role of carbohydrate-binding module and pH in non-productive binding[J]. Enzyme & Microbial Technology, 2013, 53(5):315-321.
[50] Suchy M, Linder M B, Tammelin T, et al. Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoring[J]. Langmuir, 2011, 27(14):8819-8828.
[51] Palonen H, Tjerneld F, Zacchi G, et al. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin[J]. Journal of Biotechnology, 2004, 107(1):65-72.

相似文献/References:

[1]元英进,秦 磊,李炳志,等.乙醇预处理对水稻秸秆物质迁移和酶解的影响[J].天津大学学报(自然科学版),2012,(09):757.
 YUAN Ying-jin,QIN Lei,LI Bing-zhi,et al. Effects of Ethanol Pretreatment on Chemical Conversion and Enzymatic Hydrolysis in Rice Straw[J].Journal of Tianjin University,2012,(01):757.

备注/Memo

备注/Memo:
收稿日期: 2017-02-16; 修回日期: 2017-04-27.
作者简介: 苏荣欣(1980—), 男, 博士, 教授.
通讯作者: 苏荣欣, surx@tju.edu.cn.
网络出版时间: 2017-05-27.网络出版地址: http://kns.cnki.net/kcms/detail/12.1127.N.20170527.0940.006.html.
基金项目: 国家自然科学基金资助项目(51473115, 21276192).
Supported by the National Natural Science Foundation of China (No.,51473115 and No.,21276192).
更新日期/Last Update: 2018-01-10