PDF下载 分享
[1]苏荣欣,陈眯眯,黄仁亮,等.木质纤维素薄膜制备与酶解过程的QCM-D分析[J].天津大学学报(自然科学版),2018,(01):1-8.[doi:10.11784/tdxbz201702030]
 Su Rongxin,Chen Mimi,Huang Renliang,et al.QCM-D Analysis of Film Formation and Enzymatic Hydrolysis of Lignocellulose[J].Journal of Tianjin University,2018,(01):1-8.[doi:10.11784/tdxbz201702030]
点击复制

木质纤维素薄膜制备与酶解过程的QCM-D分析

参考文献/References:

[1] Sheridan C. Big oil turns on biofuels[J]. Nature Biotechnology, 2013, 31(10):870-873.
[2] Liao J C, Mi L, Pontrelli S, et al. Fuelling the future:Microbial engineering for the production of sustainable biofuels[J]. Nature Reviews Microbiology, 2016, 14(5):288-304.
[3] Somerville C, Bauer S, Brininstool G, et al. Toward a systems approach to understanding plant cell walls[J]. Science, 2004, 306(5705):2206-2211.
[4] Huang R L, Su R X, Qi W, et al. Bioconversion of lignocellulose into bioethanol:Process intensification and mechanism research[J]. Bioenergy Research, 2011, 4(4):225-245.
[5] Maurer S A, Bedbrook C N, Radke C J. Competitive sorption kinetics of inhibited endo-and exoglucanases on a model cellulose substrate[J]. Langmuir, 2012, 28(41):14598-14608.
[6] Mohan T, Niegelhell K, Zarth C S P, et al. Triggering protein adsorption on tailored cationic cellulose surfaces [J]. Biomacromolecules, 2014, 15(11):3931-3941.
[7] Zhang Y X, Rojas O J. Immunosensors for C-reactive protein based on ultrathin films of carboxylated cellulose nanofibrils[J]. Biomacromolecules, 2017, 18(2):526-534.
[8] Benselfelt T, Cranston E D, Ondaral S, et al. Adsorption of xyloglucan onto cellulose surfaces of different morphologies:An entropy-driven process[J]. Biomacromolecules, 2016, 17(9):2801-2811.
[9] Salas C, Rojas O J, Lucia L A, et al. On the surface interactions of proteins with lignin[J]. ACS Applied Materials & Interfaces, 2013, 5(1):199-206.
[10] Tham Y Y, Molino P J, Higgins M J, et al. The study of deposition of wood extractives and model compound colloids onto chromium and cellulose surfaces using quartz crystal microbalance with dissipation(QCM-D)[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2016, 491:1-11.
[11] Pasquini D, Balogh D T, Oliveira O N, et al. Lignin molecular arrangements in Langmuir and Langmuir-Blodgett films:The influence of extraction processes [J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2005, 252(2/3):193-200.
[12] Raegen A N, Reiter K, Dion A, et al. Advances in surface plasmon resonance imaging enable quantitative tracking of nanoscale changes in thickness and roughness [J]. Analytical Chemistry, 2014, 86(7):3346-3354.
[13] Quirk A, Lipkowski J, Vandenende C, et al. Direct visualization of the enzymatic digestion of a single fiber of native cellulose in an aqueous environment by atomic force microscopy[J]. Langmuir, 2010, 26(7):5007-5013.
[14] Maurer S A, Bedbrook C N, Radke C J. Cellulase adsorption and reactivity on a cellulose surface from flow ellipsometry[J]. Industrial & Engineering Chemistry Research, 2012, 51(35):11389-11400.
[15] Eriksson J, Malmsten M, Tiberg F, et al. Enzymatic degradation of model cellulose films[J]. Journal of Colloid & Interface Science, 2005, 284(1):99-106.
[16] Falt S, W?gberg L, Vesterlind E L, et al. Model films of cellulose ID—Improved preparation method and characterization of the cellulose film[J]. Cellulose, 2004, 11(2):151-162.
[17] Gunnars S, W?gberg L, Stuart M A C. Model ?lms of cellulose:I. Method development and initial results[J]. Cellulose, 2002, 9(3):239-249.
[18] Cheng G, Liu Z L, Murton J K, et al. Neutron reflectometry and QCM-D study of the interaction of cellulases with films of amorphous cellulose[J]. Biomacromolecules, 2011, 12(6):2216-2224.
[19] Cheng G, Datta S, Liu Z L, et al. Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and QCM-D[J]. Langmuir, 2012, 28(22):8348-8358.
[20] Vuoriluoto M, Orelma H, Zhu B, et al. Control of protein affinity of bioactive nanocellulose and passivation using engineered block and random copolymers[J]. ACS Applied Materials & Interfaces, 2016, 8(8):5668-5678.
[21] Pfeiffer K A, Sorek H, Roche C M, et al. Evaluating endoglucanase Cel7B-lignin interaction mechanisms and kinetics using quartz crystal microgravimetry[J]. Biotechnology & Bioengineering, 2015, 112(11):2256-2266.
[22] Ganner T, Rosker S, Eibinger M, et al. Tunable semicrystalline thin film cellulose substrate for high-resolution, in-situ AFM characterization of enzymatic cellulose degradation[J]. ACS Applied Materials & Interfaces, 2015, 7(50):27900-27909.
[23] Qin C R, Clarke K, Li K C. Interactive forces between lignin and cellulase as determined by atomic force microscopy[J]. Biotechnology for Biofuels, 2014, 7(1):65-74.
[24] Chen Q, Xu S M, Liu Q X, et al. QCM-D study of nanoparticle interactions[J]. Advances in Colloid & Interface Science, 2016, 233:94-114.
[25] Sauerbrey G. Verwendung von schwingquarzen zur w?gung dünner schichten und zur mikrow?gung[J]. Zeitschrift für Physik, 1959, 155(2):206-222.
[26] Rodahl M, Jonson M. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces:Continuum mechanics approach[J]. Physica Scripta, 1999, 59(9):391-396.
[27] Zhou S S, Li H F, Garlapalli R, et al. Hydrolysis of model cellulose films by cellulosomes:Extension of quartz crystal microbalance technique to multienzymatic complexes[J]. Journal of Biotechnology, 2017, 241:42-49.
[28] Orelma H, Filpponen I, Johansson L S, et al. Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules [J]. Biomacromolecules, 2011, 12(12):4311-4318.
[29] Lou H M, Wang M X, Lai H R, et al. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate[J]. Bioresource Technology, 2013, 146(10):478-484.
[30] Norgren M, Notley S M, Majtnerova A, et al. Smooth model surfaces from lignin derivatives. I. Preparation and characterization[J]. Langmuir, 2006, 22(3):1209-1214.
[31] Rahikainen J L, Martin-Sampedro R, Heikkinen H, et al. Inhibitory effect of lignin during cellulose bioconversion:The effect of lignin chemistry on non-productive enzyme adsorption[J]. Bioresource Technology, 2013, 133(2):270-278.
[32] Fritz C, Ferrer A, Salas C, et al. Interactions between cellulolytic enzymes with native, autohydrolysis, and technical lignins and the effect of a polysorbate amphiphile in reducing nonproductive binding[J]. Biomacromolecules, 2015, 16(12):3878-3888.
[33] Sammond D W, Yarbrough J M, Mansfield E, et al. Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity[J]. Journal of Biological Chemistry, 2014, 289(30):20960-20969.
[34] Kumagai A, Lee S H, Endo T. Evaluation of the effect of hot-compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance[J]. Biotechnology & Bioengineering, 2016, 113(7):1441-1447.
[35] Kumagai A, Iwamoto S, Lee S H, et al. Quartz crystal microbalance with dissipation monitoring of the enzymatic hydrolysis of steam-treated lignocellulosic nanofibrils[J]. Cellulose, 2014, 21(4):2433-2444.
[36] Kumagai A, Lee S H, Endo T. Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study[J]. Biomacromolecules, 2013, 14(7):2420-2426.
[37] Strasser S, Niegelhell K, Kaschowitz M, et al. Exploring nonspecific protein adsorption on lignocellulosic amphiphilic bicomponent films[J]. Biomacromolecules, 2016, 17(3):1083-1092.
[38] Ehmann H M A, Werzer O, Pachmajer S, et al. Surface-sensitive approach to interpreting supramolecular rearrangements in cellulose by synchrotron grazing incidence small-angle X-ray scattering[J]. ACS Macro Letters, 2015, 4(7):713-716.
[39] Hoeger I C, Filpponen I, Martin-Sampedro R, et al. Bicomponent lignocellulose thin films to study the role of surface lignin in cellulolytic reactions[J]. Biomacromolecules, 2012, 13(10):3228-3240.
[40] Martín-Sampedro R, Rahikainen J L, Johansson L S, et al. Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content[J]. Biomacromolecules, 2013, 14(4):1231-1239.
[41] Huang R L, Guo H, Su R X, et al. Enhanced cellulase recovery without beta-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant[J]. Biotechnology & Bioengineering, 2017, 114(3):543-551.
[42] Guo H, Zou S L, Liu B S, et al. Reducing beta-glucosidase supplementation during cellulase recovery using engineered strain for successive lignocellulose bioconversion[J]. Bioresource Technology, 2015, 187:362-368.
[43] 苏荣欣 杨仁俊, 齐崴, 等. 聚多巴胺辅助磁微球固定β-葡萄糖苷酶的制备与应用[J]. 天津大学学报:自然科学与工程技术版, 2017, 50(5):471-476.
Su Rongxin, Yang Renjun, Qi Wei, et al. Polydopamine-assisted preparation and application of magnetic immobilized β-Glucosidase[J]. Journal of Tianjin University:Science and Technology, 2017, 50(5):471-476(in Chinese).
[44] Su R X, Yang R J, Yang J F, et al. Oscillating cellulase adsorption and enhanced lignocellulose
hydrolysis upon ultrasound treatment[J]. Transactions of Tianjin University, 2016, 23(1):11-19.
[45] Maurer S A, Brady N W, Fajardo N P, et al. Surface kinetics for cooperative fungal cellulase digestion of cellulose from quartz crystal microgravimetry[J]. Journal of Colloid & Interface Science, 2013, 394(1):498-508.
[46] Nakagame S, Chandra R P, Kadla J F, et al. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin[J]. Biotechnology & Bioengineering, 2011, 108(3):538-548.
[47] Li M, Pu Y Q, Ragauskas A J. Current understanding of the correlation of lignin structure with biomass recalcitrance[J]. Frontiers in Chemistry, 2016, 4:1-8.
[48] Guo F F, Shi W J, Sun W, et al. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism[J]. Biotechnology for Biofuels, 2014, 7(1):1-10.
[49] Rahikainen J L, Evans J D, Mikander S, et al. Cellulase-lignin interactions:The role of carbohydrate-binding module and pH in non-productive binding[J]. Enzyme & Microbial Technology, 2013, 53(5):315-321.
[50] Suchy M, Linder M B, Tammelin T, et al. Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoring[J]. Langmuir, 2011, 27(14):8819-8828.
[51] Palonen H, Tjerneld F, Zacchi G, et al. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin[J]. Journal of Biotechnology, 2004, 107(1):65-72.

相似文献/References:

[1]元英进,秦 磊,李炳志,等.乙醇预处理对水稻秸秆物质迁移和酶解的影响[J].天津大学学报(自然科学版),2012,(09):757.
 YUAN Ying-jin,QIN Lei,LI Bing-zhi,et al. Effects of Ethanol Pretreatment on Chemical Conversion and Enzymatic Hydrolysis in Rice Straw[J].Journal of Tianjin University,2012,(01):757.

备注/Memo

收稿日期: 2017-02-16; 修回日期: 2017-04-27.
作者简介: 苏荣欣(1980—), 男, 博士, 教授.
通讯作者: 苏荣欣, surx@tju.edu.cn.
网络出版时间: 2017-05-27.网络出版地址: http://kns.cnki.net/kcms/detail/12.1127.N.20170527.0940.006.html.
基金项目: 国家自然科学基金资助项目(51473115, 21276192).
Supported by the National Natural Science Foundation of China (No.,51473115 and No.,21276192).

更新日期/Last Update: 2018-01-10