PDF下载 分享
[1]冀中,郭威辰.基于局部保持典型相关分析的零样本动作识别[J].天津大学学报(自然科学版),2017,(09):975-983.[doi:10.11784/tdxbz201607010]
 Ji Zhong,Guo Weichen.Zero Shot Action Recognition Based on Local Preserving Canonical Correlation Analysis[J].Journal of Tianjin University,2017,(09):975-983.[doi:10.11784/tdxbz201607010]
点击复制

基于局部保持典型相关分析的零样本动作识别

参考文献/References:

[1] Xu X, Hospedales T, Gong S. Zero-shot action recognition by word-vector embedding[J]. International Journal of Computer Vision, 2015, 123(3): 309-333.
[2] Xu X, Hospedales T, Gong S. Semantic embedding space for zero-shot action recognition[C]//IEEE International Conference on Image Processing. Quebec City, Canada, 2015: 63-67.
[3] Fu Y, Hospedales T M, Xiang T, et al. Transductive multi-view zero-shot learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(11): 2332-2345.
[4] Elhoseiny M, Liu J, Cheng H, et al. Zero-shot event detection by multimodal distributional semantic embedding of videos[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Phoenix, USA, 2015: 10-19.
[5] Zhang Z, Saligrama V. Zero-shot learning via semantic similarity embedding[C]// IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 4166-4174.
[6] Lampert C H, Nickisch H, Harmeling S. Attribute-based classification for zero-shot visual object categorization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 453-465.
[7] Liu J, Kuipers B, Savarese S. Recognizing human actions by attributes[C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2015: 3337-3344.
[8] Lampert C H, Nickisch H, Harmeling S. Learning to detect unseen object classes by between-class attribute transfer[C]//IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 951-958.
[9] Fu Y, Hospedales T M, Xiang T, et al. Learning multimodal latent attributes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2): 303-316.
[10] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems. South Lake Tahoe, USA, 2013: 3111-3119.
[11] Socher R, Ganjoo M, Manning C D, et al. Zero-shot learning through cross-modal transfer[C]//Advances in Neural Information Processing Systems. South Lake Tahoe, USA, 2013: 935-943.
[12] Habibian A, Mensink T, Snoek C G. Videostory: A new multimedia embedding for few-example recognition and translation of events[C]//Proceedings of the ACM International Conference on Multimedia. New York, USA, 2014: 17-26.
[13] Fu Z, Xiang T A, Kodirov E, et al. Zero-shot object recognition by semantic manifold distance[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 2635-2644.
[14] Akata Z, Reed S, Walter D, et al. Evaluation of output embeddings for fine-grained image classification [C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 2927-2936.
[15] Soomro K, Zamir A R, Shah M. Ucf101: A dataset of 101 Human actions classes from videos in the wild[J]. Computer Science, 2012(11):1-7.
[16] Frome A, Corrado G S, Shlens J, et al. Devise: A deep visual-semantic embedding model[C]//Advances in Neural Information Processing Systems. South Lake Tahoe, USA, 2013: 2121-2129.
[17] Romera-Paredes B, Torr P. An embarrassingly simple approach to zero-shot learning[C]//Proceedings of International Conference on Machine Learning. Lille, France, 2015: 2152-2161.
[18] Liu M, Zhang D, Chen S. Attribute relation learning for zero-shot classification[J]. Neurocomputing, 2014, 139(2): 34-46.
[19] Xian Y, Akata Z, Sharma G , et al. Latent embeddings for zero-shot classification[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,USA, 2016: 69-77.
[20] Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359.
[21] Tran D, Bourdev L, Fergus R, et al. Learning spatiotemporal features with 3D convolutional networks [C]//IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 4489-4497.
[22] Yang Y, Liu R, Deng C, et al. Multi-task human action recognition via exploring super-category[J]. Signal Processing, 2016, 124(6):36-44.
[23] Yang Y, Deng C, Tao D, et al. Latent max-margin multitask learning with skelets for 3-D action recognition[J]. IEEE Transactions on Cybernetics, 2016, 47 (2) :1-10.
[24] Zhao F, Huang Y, Wang L, et al. Relevance topic model for unstructured social group activity recognition [C]//Advances in Neural Information Processing Systems. South Lake Tahoe,USA, 2013: 2580-2588.
[25] Gan C, Lin M, Yang Y, et al. Exploring semantic inter-class relationships (SIR) for zero-shot action recognition [C]//AAAI Conference on Artificial Intelligence. Austin, German, 2015: 468-471.
[26] Melzer T, Reiter M, Bischof H. Appearance models based on kernel canonical correlation analysis[J]. Pattern Recognition, 2003, 36(9): 1961-1971.
[27] Hsieh W W. Nonlinear canonical correlation analysis by neural networks[J]. Neural Networks, 2000, 13(10): 1095-1105.
[28] Kumar S, Martin E B, Morris A J. Non-linear canonical correlation analysis using a RBF networks[C]//Eurorean Symposium on Artificial Neural Networks. Bruges, Belgique, 2002: 507-512.
[29] Lai P L, Fyfe C. A neural implementation of canonical
correlation analysis[J]. Neural Networks, 1999, 12(10): 1391-1397.
[30] Kambhatla N, Leen T K. Dimension reduction by local principal component analysis[J]. Neural Computation, 1997, 9(7):1493-1516.
[31] He X. Locality preserving projections[C]//Advances in Neural Information Processing Systems. Chicago, USA,2005: 186-197.
[32] Verbeek J J, Roweis S T, Vlassis N. Non-linear CCA and PCA by alignment of local models[C]//Advances in Neural Information Processing Systems. Vancouver, Canada, 2003: 297-304.
[33] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323-2326.
[34] Saul L K, Roweis S T. Think globally, fit locally: Unsupervised learning of low dimensional manifolds[J]. Journal of Machine Learning Research, 2003, 4(2): 119-155.
[35] Sun T, Chen S. Locality preserving CCA with applications to data visualization and pose estimation[J]. Image and Vision Computing, 2007, 25(5): 531-543.
[36] Wang H, Schmid C. Action recognition with improved trajectories[C]//IEEE International Conference on Computer Vision. Sydney, Australia, 2013: 3551-3558
[37] Dinu G, Lazaridou A, Baroni M. Improving zero-shot learning by mitigating the Hubness problem[C]// International Conference on Learning Representations. San Diego, USA, 2015: 10-20.
[38] Kuehne H, Jhuang H, Garrote E, et al. Hmdb: A large video database for human motion recognition[C]//IEEE International Conference on Computer Vision. Barcelona, Spain,2011: 2556-2563.

相似文献/References:

[1]冀中,谢于中,庞彦伟.基于典型相关分析和距离度量学习的零样本学习[J].天津大学学报(自然科学版),2017,(08):813.[doi:10.11784/tdxbz201606003]
 Ji Zhong,Xie Yuzhong,Pang Yanwei.Zero-Shot Learning Based on Canonical Correlation Analysis and Distance Metric Learning[J].Journal of Tianjin University,2017,(09):813.[doi:10.11784/tdxbz201606003]

备注/Memo

收稿日期: 2016-07-04; 修回日期: 2016-09-29.
作者简介: 冀中(1979—), 男, 副教授.
通讯作者: 冀中, jizhong@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(61271325, 61472273); 天津大学“北洋学者-青年骨干”教师资助项目(2015XRG-0014).
Supported by the National Natural Science Foundation of China(No. 61271325 and No. 61472273)and Elite Scholar Program of Tianjin Uni-
versity(No. 2015XRG-0014).

更新日期/Last Update: 2017-09-10