|本期目录/Table of Contents|

[1]顾翔元,郭继昌,田煜衡,等.基于条件互信息的空域隐写检测特征选择算法[J].天津大学学报(自然科学版),2017,(09):961-966.[doi:10.11784/tdxbz201608055]
 Gu Xiangyuan,Guo Jichang,Tian Yuheng,et al.Spatial-Domain Steganalytic Feature Selection Algorithm Based on Conditional Mutual Information[J].Journal of Tianjin University,2017,(09):961-966.[doi:10.11784/tdxbz201608055]
点击复制

基于条件互信息的空域隐写检测特征选择算法()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年09
页码:
961-966
栏目:
电气自动化与信息工程
出版日期:
2017-09-22

文章信息/Info

Title:
Spatial-Domain Steganalytic Feature Selection Algorithm Based on Conditional Mutual Information
文章编号:
0493-2137(2017)09-0961-06
作者:
顾翔元 郭继昌 田煜衡 李重仪
天津大学电气自动化与信息工程学院,天津 300072
Author(s):
Gu Xiangyuan Guo Jichang Tian Yuheng Li Chongyi
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
关键词:
特征选择 隐写分析 空域隐写检测特征 条件互信息
Keywords:
feature selection steganalysis spatial-domain steganalytic feature conditional mutual information
分类号:
TP391
DOI:
10.11784/tdxbz201608055
文献标志码:
A
摘要:
隐写检测特征维数的增加, 不仅增加了分类器训练时间和预测时间, 甚至还会造成“维数灾难”.因此, 为达到特征降维的目的, 对空域隐写检测特征选择进行研究, 提出了一种基于条件互信息的特征选择算法.该算法首先选取一个与类标签具有最大互信息的特征, 接着选取与此特征和类标签具有最大条件互信息的一个特征; 然后通过前向寻找方式, 从未选择特征子集中循环选取与刚选取特征和类标签具有最大条件互信息的特征, 一直到选出规定数目的特征后结束循环.实验结果表明, 与其他算法相比, 所提算法取得了较好的特征选择效果.
Abstract:
The increase in dimensions of steganalytic features not only increases the time of classifier training and classifier prediction,but also can cause “the curse of dimensionality”. Therefore,in order to decrease the dimensions of steganalytic features,spatial-domain steganalytic feature selection was investigated and a feature selection algorithm based on conditional mutual information was proposed. The proposed algorithm first selects the feature which has the maximum condional mutual information with class label. Then,it selects the feature which has maximum conditional mutual information with the class label and the previous selected feature. Following that,from the candidate feature set,it loops to select the feature which has maximum conditional mutual information with the class label and the previous selected feature in a forward search way. The loop ends when the specified number of features is selected. The experimental results show that the proposed algorithm performs better than other algorithms.

参考文献/References:

[1] Cheddad A, Condell J, Curran K, et al. Digital image steganography:Survey and analysis of current methods [J]. Signal Processing, 2010, 90(3):727-752.
[2] Ker A D. Steganalysis of LSB matching in grayscale images[J]. IEEE Signal Processing Letters, 2005, 12(6):441-444.
[3] Liu Q Z, Sung A H, Ribeiro B, et al. Image complexity and feature mining for steganalysis of least significant bit matching steganography[J]. Information Sciences, 2008, 178(1):21-36.
[4] Fridrich J, Kodovsky J. Rich models for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3):868-882.
[5] Kodovsky J, Fridrich J, Holub V. Ensemble classifiers for steganalysis of digital media[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2):432-444.
[6] Kodovsky J, Fridrich J. Steganalysis in high dimensions:Fusing classifiers built on random subspaces[C]// Proceedings of SPIE Media Watermarking, Security, and Forensics. San Francisco, USA, 2011:181-197.
[7] Miche Y, Roue B, Lendasse A, et al. A feature selection methodology for steganalysis[C]//Proceedings of Multimedia Content Representation, Classification and Security. Istanbul, Turkey, 2006:49-56.
[8] Wang Y, Moulin P. Optimized feature extraction for learning-based image steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2007, 2(1):31-45.
[9] Liu Q Z, Sung A H, Chen Z X. Feature mining and pattern classification for steganalysis of LSB matching steganography in grayscale images[J]. Pattern Recognition, 2008, 41(1):56-66.
[10] Ghareh M F, Saniee A M. Image steganalysis using a bee colony based feature selection algorithm[J]. Engineering Application of Artificial Intelligence, 2014, 31(5):35-43.
[11] Lu J C, Liu F L, Luo X Y. Selection of image features for steganalysis based on the Fisher criterion[J]. Digital Investigation, 2014, 11(1):57-66.
[12] Bennasar M, Hicks Y, Setchi R. Feature selection using joint mutual information maximization[J]. Expert Systems with Applications, 2015, 42(22):8520-8532.
[13] Wang J Z, Wu L S, Kong J. Maximum weight and minimum redundancy:A novel framework for feature subset selection[J]. Pattern Recognition, 2013, 46(6):1616-1627.
[14] Naghibi T, Hoffmann S, Pfister B. A semidefinite programming based search strategy for feature selection with mutual information measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(8):1529-1541.
[15] Jakulin A, Bratko I. Testing the significance of attribute
interactions[C]//Proceedings of the International Conference on Machine Learning. Banff, Canada, 2004, 409-416.
[16] Pevn? T, Bas P, Fridrich J. Steganalysis by subtractive pixel adjacency matrix[J]. IEEE Transactions on Information Forensic Security, 2010, 5(2):215-224.
[17] Bas P, Furon T. BOWS2[EB/OL]. http://bows2.ec-lille.fr/html, 2011-07-21.
[18] Hall M, Frank E, Holmes G, et al. The WEKA data mining software:An update[J]. SIG KDD Exploration, 2009, 11(1):10-18.
[19] Fayyad U, Irani K. Multi-interval discretization of continuous-valued attributes for classification learning[C]//Proceedings of the International Joint Conference on Artificial Intelligence. Chambéry, France, 1993:1022-1027.
[20] Chang C C, Lin C J. LIBSVM:A library for support vector machines[J]. ACM Transactions on Intelligent System Technology, 2011, 2(3):1-27.
[21] Bennasar M, Setchi R, Hicks Y. Feature interaction maximisation[J]. Pattern Recognition Letters, 2013, 32(14):1630-1635.

相似文献/References:

[1]向先全,陶建华.基于GA-SVM的渤海湾富营养化模型[J].天津大学学报(自然科学版),2011,(03):215.
 XIANG Xian-quan,TAO Jian-hua.Eutrophication Model of Bohai Bay Based on GA-SVM[J].Journal of Tianjin University,2011,(09):215.
[2]窦 刚,陈广胜,赵 鹏. 采用颜色纹理及光谱特征的木材树种分类识别[J].天津大学学报(自然科学版),2015,(02):147.[doi:10.11784/tdxbz201407025]
 Dou Gang,Chen Guangsheng,Zhao Peng. Wood Species Recognition Using Color Texture and Spectral Features[J].Journal of Tianjin University,2015,(09):147.[doi:10.11784/tdxbz201407025]

备注/Memo

备注/Memo:
收稿日期: 2016-08-31; 修回日期: 2017-03-21.
作者简介: 顾翔元(1990—), 男, 博士研究生, gxiangyuan@tju.edu.cn.
通讯作者: 郭继昌, jcguo@tju.edu.cn.
基金项目: 天津市自然科学基金资助项目(15JCYBJC15500).
Supported by the Natural Science Foundation of Tianjin, China(No.,15JCYBJC15500).
更新日期/Last Update: 2017-09-10