PDF下载 分享
[1]庞彦伟,尚楚博,何宇清.基于尺度不变特征和位置先验的行人检测算法[J].天津大学学报(自然科学版),2017,(09):946-952.[doi:10.11784/tdxbz201608024]
 Pang Yanwei,Shang Chubo,He Yuqing.Pedestrian Detection Algorithm Based on Scale Invariant Features and Prior Position Information[J].Journal of Tianjin University,2017,(09):946-952.[doi:10.11784/tdxbz201608024]
点击复制

基于尺度不变特征和位置先验的行人检测算法

参考文献/References:

[1] Benenson R, Omran M, Hosang J, et al. Ten years of pedestrian detection, what have we learned?[C]// Proceedings of European Conference on Computer Vision. Zurich, Switzerland, 2014:613-627.
[2] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:580-587.
[3] Hosang J H, Omran M, Benenson R, et al. Taking a deeper look at pedestrians[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:1-9.
[4] Sermanet P, Kavukcuoglu K, Chintala S, et al. Pedestrian detection with unsupervised multi-stage feature learning[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013:3626-3633.
[5] Dollar P, Tu Zhouwen, Peron P, et al. Integral channel features[C]// Proceedings of British Machine Vision Conference. London, UK, 2009:1-11.
[6] Appel R, Fuchs T, Dollar P, et al. Quickly boosting decision trees-oruning underachieving features early[C]// Proceedings of International Conference on Machine Learning. Atlanta, USA, 2013:594-602.
[7] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005:886-893.
[8] Dollar P, Appel R, Belongie S, et al. Fastest feature pyramids for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8):1532-1545.
[9] Nam W, Dollar P, Han J H. Local decorrelation for improved pedestrian detection[C]// Proceedings of Advances in Neural Information Processing Systems. Montreal, Canada, 2014:424-432.
[10] Zhang Shanshan, Bauckhage C, Cremers A B. Informed Haar-like features improve pedestrian detection[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:947-954.
[11] Zhang Shanshan, Benenson R, Schiele B. Filtered channel features for pedestrian detection[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:1751-1760.
[12] Cao Jiale, Pang Yanwei, Li Xuelong. Pedestrian detection inspired by appearance constancy and shape symmetry[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:5538-5551.
[13] Hoiem D, Efros A, Hebert M. Putting objects in perspective[J]. International Journal of Computer Vision, 2008, 80(1):3-15.
[14] Park D, Ramanan D, Fowlkes C. Multiresolution models for object detection[C]// Proceedings of European Conference on Computer Vision. Zurich, Switzerland, 2010:241-254.
[15] Weber E H, Hering E. Tastsinn und Gemeingefuhl[M]. Leipzig:Hering, 1905.
[16] Dollar P, Wojek C, Schiele B, et al. Pedestrian detection:An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4):743-761.
[17] Luo Ping, Tian Yonglong, Wang Xiaogang, et al. Switchable deep network for pedestrian detection[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:899-906.
[18] Paisitkriangkrai S, Shen Chunhua, van den Hengel A. Strengthening the effectiveness of pedestrian detection with spatially pooled features[C]// Proceedings of European Conference on Computer Vision. Zurich, Switzerland, 2014:546-561.
[19] Tian Yonglong, Luo Ping, Wang Xiaogang, et al. Pe-
destrian detection aided by deep learning semantic tasks[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:5079-5087.
[20] Tian Yonglong, Luo Ping, Wang Xiaogang, et al. Deep learning strong parts for pedestrian detection[C]// Proceedings of IEEE International Conference on Computer Vision. Santiago, Chile, 2016:1904-1912.
[21] Cai Zhaowei, Saberian M, Vasconcelos N. Learning complexity-aware cascades for deep pedestrian detection [C] //Proceedings of IEEE International Conference on Computer Vision. Zurich, Switzerland, 2016:1-10.
[22] Zhang Shanshan, Benenson R, Omran M, et al. How far are we from solving pedestrian detection?[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:1259-1267.

相似文献/References:

[1]金志刚,赵明昕,张瑞,等.基于双目视觉的聚合积分通道行人检测优化算法[J].天津大学学报(自然科学版),2016,(12):1225.[doi:10.11784/tdxbz201506016]
 Jin Zhigang,Zhao Mingxin,Zhang Rui,et al.Optimized Aggregated Channel Features Pedestrian Detection Algorithm Based on Binocular Vision[J].Journal of Tianjin University,2016,(09):1225.[doi:10.11784/tdxbz201506016]

备注/Memo

收稿日期: 2016-08-16; 修回日期: 2016-11-22.
作者简介: 庞彦伟(1976—), 男, 博士, 教授.
通讯作者: 庞彦伟, pyw@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(61472274).
Supported by the National Natural Science Foundation of China(No. 61472274).

更新日期/Last Update: 2017-09-10