|本期目录/Table of Contents|

[1]丁红岩,贾楠,张浦阳,等.海上风电复合筒型基础粉质黏土下沉试验分析[J].天津大学学报(自然科学版),2017,(09):893-899.[doi:10.11784/tdxbz201610015]
 Ding Hongyan,Jia Nan,Zhang Puyang,et al.Analysis of Penetration Test of Composite Bucket Foundations for Offshore Wind Turbines in Silty Clay[J].Journal of Tianjin University,2017,(09):893-899.[doi:10.11784/tdxbz201610015]
点击复制

海上风电复合筒型基础粉质黏土下沉试验分析()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年09
页码:
893-899
栏目:
建筑工程
出版日期:
2017-09-22

文章信息/Info

Title:
Analysis of Penetration Test of Composite Bucket Foundations for Offshore Wind Turbines in Silty Clay
文章编号:
0493-2137(2017)09-0893-07
作者:
丁红岩123 贾楠3 张浦阳123 刘永刚3
1. 天津大学水利工程仿真与安全国家重点实验室,天津 300350;2. 滨海土木工程结构与安全教育部重点实验室(天津大学),天津 300350;3. 天津大学建筑工程学院,天津 300350
Author(s):
Ding Hongyan 123 Jia Nan3 Zhang Puyang 123 Liu Yonggang3
1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
2.Key Laboratory of Coast Civil Structure Safety(Tianjin University), Ministry of Education, Tianjin 300350, China
3.School of Civil Engineering, Tianjin University, Tianjin 300350, China
关键词:
复合筒型基础 土压力 孔隙水压力 沉贯阻力
Keywords:
composite bucket foundation soil pressure pore water pressure penetration resistance
分类号:
TU443
DOI:
10.11784/tdxbz201610015
文献标志码:
A
摘要:
复合筒型基础的沉放是一项关键施工过程.沉放时土体在施工负压下受到扰动, 土体中土压力和孔隙水压力发生变化, 对沉贯阻力造成影响.针对复合筒型基础的沉放过程, 在粉质黏土中开展了大比尺模型试验.试验中监测了基础舱内压力、周围土体的土压力及孔隙水压力的变化.通过理论计算, 对试验模型沉贯所需负压进行预测, 并将试验施加负压与预测负压进行对比.试验结果表明:基础周围土体土压力和孔隙水压力在负压作用下均减小, 且筒壁内侧土体土压力减小程度大于外侧土体; 沉放过程中基础发生倾斜时, 通过向高舱处抽负压可以有效调整基础的倾斜度; 预测负压大于试验施加负压, 当使用Houlsby提出的计算方法计算筒型基础在粉质黏土中的沉贯阻力时, 摩擦系数建议取0.3.
Abstract:
The penetration of composite bucket foundation is a vital construction process. The soil is disturbed under negative pressure in the process,and both soil pressure and pore water pressure in soil are changed,which affects penetration resistance. A large-scaled model test on the penetration process of composite bucket foundation was carried out in silty clay. During the test,the pressure in compartments,soil pressure and pore water pressure in surrounding soils were monitored. Moreover,the required negative pressure for penetrating was predicated through theoretical calculation,and the negative pressure applied to the test was compared with the predicted negative pressure. The results show that the soil pressure and pore water pressure in the soil around the foundation are both reduced. In addition,the inner soil pressure near the skirt decreases more than the outer soil pressure. When the foundation starts to tilt,the feasibility of bucket tilt adjusting technique is validated by applying suction to higher compartments. The predicted negative pressure is larger than the applied negative pressure in the test. When Houlsby’s method is adopted to calculate the penetration resistance of a bucket foundation in silty clay,the friction coefficient is recommended to be 0.3.

参考文献/References:

[1] 丁红岩, 杜杰. 吸力锚下沉过程中土塞高度计算[J]. 天津大学学报, 2002, 35(4):439-442.
Ding Hongyan, Du Jie. Height of soil-plug calulation in suction anchor[J]. Journal of Tianjin University, 2002, 35(4):439-442(in Chinese).
[2] Zhang Puyang, Ding Hongyan, Le Conghuan. Hydrodynamic motion of a large prestressed concrete bucket foundation for offshore wind turbines[J]. Renew Sustain Energy, 2013, 5(6):063126.
[3] Zhang Puyang, Ding Hongyan, Le Conghuan. Motion analysis on integrated transportation technique for offshore wind turbines[J]. Renew Sustain Energy, 2013, 5(5):053117.
[4] Zhang Puyang, Han Yanqing, Ding Hongyan, et al. Field experiments on wet tows of an integrated transportation and installation vessel with two bucket foundations for offshore wind turbines[J]. Ocean Engineering, 2015, 108:769-777.
[5] Sahota B, Wilson Q. The breakout behavior of a suction anchor embedded in submerged sand[C]//Proceedings of Offshore Technology Conference. Houston, Texas, USA, 1982:117-132.
[6] Senders M, Randolph M F. CPT-based method for the installation of suction caissons in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(1):14-25.
[7] Tran M N, Randolph M F. Variation of suction pressure during caisson installation in sand[J]. Geotechnique, 2008, 58(1):1-11.
[8] Tran M N, Randolph M F, David W A. Study of seepage flow and sand plug loosening in installation of suction caissons in sand[C]//The 15th International Offshore and Polar Engineering Conference. Seoul, Korea, 2005:516-521.
[9] Tran M N. Installation of Suction Caisson in Dense Sand and the Influence of Silt and Cemented Layers[D]. Sydney:Department of Civil Engineering, University of Sydney, 2005.
[10] Lian Jijian, Chen Fei, Wang Haijun. Laboratory tests on soil-skirt interaction and penetration resistance of suction caissons during installation in sand[J]. Ocean Engineering, 2014, 84:1-13.
[11] 朱斌, 孔德琼, 童建国, 等. 粉土中吸力式桶形基础沉贯及抗拔特性试验研究[J]. 岩土工程学报, 2011, 33(7):1045-1053.
Zhu Bin, Kong Deqiong, Tong Jianguo, et al. Model tests on penetration and pullout of suction caissons in silt [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7):1045-1053(in Chinese).
[12] Houlsby G T, Byrne B W. Design procedures for installation of suction caisson in clay and other materials[J]. Geotechnical Engineering, 2005, 158(2):75-82.
[13] Det Norske Veritas. DNV-RP-E303 Geotechnical Design and Installation of Suction Anchorsin Clay Recommended Practice[S]. Hovik, Norway, 2005.
[14] 水力水电规划设计总院. FD003—2007(试行)风电机组地基基础设计规定[S]. 北京:中国水利水电出版社, 2007.
China Renewable Energy Engineering Institute. FD003—2007(Try-out)Design Regulations on Subgrade and Foundation for Wind Turbine Generator System[S].
Beijing:China Water and Power Press, 2007(in Chinese).
[15] Zhang Puyang, Ding Hongyan, Le Conghuan. Installation and removal records of field trials for two mooring dolphin platforms with three suction caissons[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2013, 139(6):502-517.
[16] Zhang Puyang, Guo Yaohua, Liu Yonggang, et al. Model tests on sinking technique of composite bucket foundations for offshore wind turbines in silty clay[J]. Journal of Renewable and Sustainable Energy, 2015, 7(3):033113.
[17] American Petroleum Institute. API RP 2A Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design[S]. Washington DC:API Publishing Services, 2000.

备注/Memo

备注/Memo:
收稿日期: 2016-10-09; 修回日期: 2016-11-29.
作者简介: 丁红岩(1963—), 男, 博士, 教授, dhy_td@163.com.
通讯作者: 张浦阳, zpy_td@163.com.
基金项目: 国家自然科学基金资助项目(51379142); 天津市自然科学基金资助项目(17JCYBJC22000); 创新方法工作专项资助项目
(2016IM030100).
Supported by the National Natural Science Foundation of China(No.,51379142), the Natural Science Foundation of Tianjin, China(No. 17JCYBJC22000) and the Innovation Method Fund of China(No. 2016IM030100).
更新日期/Last Update: 2017-09-10