|本期目录/Table of Contents|

[1]项忠霞,邵一鑫,李力力.单自由度可调下肢康复机器人机构优化设计[J].天津大学学报(自然科学版),2017,(08):877-884.[doi:10.11784/tdxbz201607021]
 Xiang Zhongxia,Shao Yixin,Li Lili.Optimal Design of an Adjustable One-DOF Robot Mechanism for Lower Limb Rehabilitation[J].Journal of Tianjin University,2017,(08):877-884.[doi:10.11784/tdxbz201607021]
点击复制

单自由度可调下肢康复机器人机构优化设计()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年08
页码:
877-884
栏目:
机械工程
出版日期:
2017-08-31

文章信息/Info

Title:
Optimal Design of an Adjustable One-DOF Robot Mechanism for Lower Limb Rehabilitation
文章编号:
0493-2137(2017)08-0877-08
作者:
项忠霞 邵一鑫 李力力
天津大学机构理论与装备设计教育部重点实验室,天津 300350
Author(s):
Xiang Zhongxia Shao Yixin Li Lili
Key Laboratory of Mechanism Theory and Equipment Design of Ministry Education, Tianjin University, Tianjin 300350, China
关键词:
康复机器人 机构设计 尺度综合 凸轮-连杆机构 步态轨迹
Keywords:
rehabilitation robot mechanism design dimensional synthesis cam-linkage mechanism gait trajectory
分类号:
TH112;R49
DOI:
10.11784/tdxbz201607021
文献标志码:
A
摘要:
为帮助下肢功能障碍患者完成步态康复训练, 设计了一种新型下肢康复机器人机构, 提出了机构尺度优化综合方法.首先, 以一个两自由度平面五杆机构为基本机构, 通过逆运动学分析建立五杆机构两个输入之间的函数关系, 并以曲柄匀速转动为优化目标进行机构尺度综合; 然后, 在此机构的基础上引入一凸轮-连杆函数生成机构, 通过逆运动学分析与机构尺度综合求解并优化凸轮廓线, 实现了五杆机构两个输入之间的函数关系, 并减少了机构自由度; 最后, 在此基础上引入一缩放机构, 实现机构轨迹可调.以运动捕捉实验获取的正常人体步态轨迹为目标轨迹, 进行机构优化设计, 结果表明:优化所得机构在匀速电机驱动下能够很好地模拟正常人体步态轨迹与髋、膝关节运动规律, 从而验证了机构与优化方法的有效性.
Abstract:
In order to help patients with lower limb disabilities to complete gait rehabilitation,a novel mechanism for lower limb rehabilitation is designed,and the method for optimal dimensional synthesis of the mechanism is also presented. As the first step,a two degrees of freedom five-bar mechanism is selected as the original mechanism,of which the function relationship between the two inputs is established by using inverse kinematics,and then the dimensional synthesis of the five-bar mechanism is conducted,taking the uniform rotation of the crank as the optimization goal. In order to implement the established function relationship and reduce the mobility of the mechanism,a cam-linkage mechanism is introduced and the cam profile is optimized by using inverse kinematics and dimensional synthesis. Finally,a pantograph mechanism is used to adjust the generated trajectory. A target gait trajectory obtained by motion capture experiment is used for the dimensional synthesis of the mechanism. The result shows that the generated trajectory and the hip and knee angles match well with the natural ones. Moreover,a constant speed motor is sufficient for the control of the rehabilitation robot system,which verifies the feasibility of the mechanism and the method.

参考文献/References:

[1] 胡进, 侯增广, 陈翼雄, 等. 下肢康复机器人及其交互控制方法[J]. 自动化学报, 2014, 40(11):2377-2390.
Hu Jin, Hou Zengguang, Chen Yixiong, et al. Lower limb rehabilitation robots and interactive control methods [J]. Acta Automatica Sinica, 2014, 40(11):2377-2390(in Chinese).
[2] 谭民, 王硕. 机器人技术研究进展[J]. 自动化学报, 2013, 39(7):963-972.
Tan Min, Wang Shuo. Research progress on robotics [J]. Acta Automatica Sinica, 2013, 39(7):963-972(in Chinese).
[3] 李峰, 吴智政, 钱晋武. 下肢康复机器人步态轨迹自适应控制[J]. 仪器仪表学报, 2014, 35(9):2027-2036.
Li Feng, Wu Zhizheng, Qian Jinwu. Trajectory adaptation control for lower extremity rehabilitation robot[J]. Chinese Journal of Scientific Instrument, 2014, 35(9):2027-2036(in Chinese).
[4] Díaz I, Gil J J, Sánchez E. Lower-limb robotic rehabilitation:Literature review and challenges[J]. Journal of Robotics, 2011, 2011(1):759764.
[5] Colombo G, Joerg M, Schreier R, et al. Treadmill training of paraplegic patients using a robotic orthosis [J]. Journal of Rehabilitation Research and Development, 2000, 37(6):693-700.
[6] Veneman J F, Kruidhof R, Hekman E E G, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3):379-386.
[7] Banala S K, Kim S H, Agrawal S K, et al. Robot assisted gait training with active leg exoskeleton (ALEX)[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17(1):2-8.
[8] Wang P, Low K H, Tow A, et al. Initial system evaluation of an overground rehabilitation gait training robot(nature-gaits)[J]. Advanced Robotics, 2011, 25(15):1927-1948.
[9] Zhang J, Dong Y, Yang C, et al. 5-link model based gait trajectory adaption control strategies of the gait rehabilitation exoskeleton for post-stroke patients[J]. Mechatronics, 2010, 20(3):368-376.
[10] Guo Z, Yu H, Yin Y H. Developing a mobile lower limb robotic exoskeleton for gait rehabilitation[J]. Journal of Medical Devices, 2014, 8(4):044503.
[11] Wang H, Shi X, Liu H, et al. Design, kinematics, simulation, and experiment for a lower-limb rehabilitation robot[J]. Journal of Systems and Control Engineering, 2011, 225(6):860-872.
[12] Schmidt H, Volkmar M, Werner C, et al. Muscle activation patterns of healthy subjects during floor walking and stair climbing on an end-effector-based gait rehabilitation robot[C]//2007 IEEE 10th International Conference on Rehabilitation Robotics. Noordwijk, The Netherlands, 2007:1077-1084.
[13] Iwata H, Yano H, Nakaizumi F. Gait master:A versatile locomotion interface for uneven virtual terrain [C]//Proceedings of the Virtual Reality. Yokohama, Japan, 2001:131-137.
[14] Yoon J, Novandy B, Yoon C H, et al. A 6-DOF gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(2):201-215.
[15] Ji Z, Manna Y. Synthesis of a pattern generation mechanism for gait rehabilitation [J]. Journal of Medical Devices, 2008, 2(3):031004.
[16] 张立勋, 张晓超. 下肢康复训练机器人步态规划及运动学仿真[J]. 哈尔滨工程大学学报, 2009, 30(2):187-191.
Zhang Lixun, Zhang Xiaochao. Gait planning and kinematic simulation for a lower limb gait rehabilitation robot[J]. Journal of Harbin Engineering University, 2009, 30(2):187-191(in Chinese).
[17] Hesse S, Uhlenbrock D, Werner C, et al. A mechanized gait trainer for restoring gait in nonambulatory subjects[J]. Archives of Physical Medicine and Rehabilitation, 2000, 81(9):1158-1161.
[18] Wang F C, Yu C H, Chou T Y, et al. Design and control of an active gait trainer[C]//2009 IEEE International Symposium on Industrial Electronics. Seoul, Korea, 2009:1779-1784.
[19] Tsuge B Y, Plecnik M M, McCarthy J M. Homotopy directed optimization to design a six-bar linkage for a lower limb with a natural ankle trajectory[J]. Journal of Mechanisms and Robotics, 2016, 8(6):JMR-15-1225.
[20] 杨巍, 张秀峰, 杨灿军, 等. 基于人机 5 杆模型的下肢外骨骼系统设计[J]. 浙江大学学报:工学版, 2014, 48(3):430-435.
Yang Wei, Zhang Xiufeng, Yang Canjun, et al. Design of a lower extremity exoskeleton based on 5-bar human machine model[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(3):430-435(in Chinese).
[21] Winter D A. Biomechanics and Motor Control of Human Movement[M]. USA:John Wiley & Sons, 2009.
[22] Shao Y, Xiang Z, Liu H, et al. Conceptual design and dimensional synthesis of cam-linkage mechanisms for gait rehabilitation[J]. Mechanism and Machine Theory, 2016, 104:31-42.

备注/Memo

备注/Memo:
收稿日期: 2016-07-05; 修回日期: 2016-09-02.
作者简介: 项忠霞(1964—), 女, 博士, 教授.
通讯作者: 项忠霞, xiangzhx@tju.edu.cn.
网络出版时间: 2016-09-08.网络出版地址: http://www.cnki.net/kcms/detail/12.1127.N.20160908.1352.002.html.
基金项目: 国家自然科学基金资助项目(51175368).
Supported by the National Natural Science Foundation of China(No. 51175368).
更新日期/Last Update: 2017-08-10