|本期目录/Table of Contents|

[1]李志青,梁志伟.(ITO)x(SiO2)1-x纳米颗粒薄膜的电输运性质[J].天津大学学报(自然科学版),2017,(08):862-867.[doi:10.11784/tdxbz201605098]
 Li Zhiqing,Liang Zhiwei.Electrical Transport Properties of(ITO)x(SiO2)1-x Nanogranular Films[J].Journal of Tianjin University,2017,(08):862-867.[doi:10.11784/tdxbz201605098]
点击复制

(ITO)x(SiO2)1-x纳米颗粒薄膜的电输运性质()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年08
页码:
862-867
栏目:
材料科学与工程
出版日期:
2017-08-31

文章信息/Info

Title:
Electrical Transport Properties of(ITO)x(SiO2)1-x Nanogranular Films
文章编号:
0493-2137(2017)08-0862-06
作者:
李志青 梁志伟
天津大学理学院天津市低维材料物理与制备技术重点实验室,天津 300350
Author(s):
Li Zhiqing Liang Zhiwei
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300350, China
关键词:
纳米颗粒薄膜 电输运性质 跳跃电导 热涨落诱导隧穿
Keywords:
nanogranular films electronic transport properties hopping conductance thermal fluctuation induced tunneling
分类号:
TB333
DOI:
10.11784/tdxbz201605098
文献标志码:
A
摘要:
为了理解三维纳米颗粒薄膜体系中电子的跳跃传导行为, 采用射频磁控溅射法在玻璃基片上制备了一系列不同Sn:In2O3(ITO)体积分数的三维(ITO)x(SiO2)1-x纳米颗粒薄膜样品, 对绝缘性样品在2~300 K温度范围内电导率与温度的关系进行了系统研究. 在低温区(<120 K), 电导率与温度遵从的关系, 体系的电子输运机制符合Abeles等提出的跳跃传导模型, 电子的输运以颗粒间的跳跃为主, 颗粒库仑充电能主导着颗粒间电子的输运过程. 而在高温区, 体系的电子输运机制符合热涨落诱导的隧穿导电模型, 热涨落电势主导着颗粒间电子的输运过程.
Abstract:
A series of(ITO)x(SiO2)1-x(here ITO is the abbreviation of Sn doped In2O3)nanogranular films with different ITO volume fractions were deposited on glass substrates by the RF magnetron co-sputtering method. To systematically investigate the charge transport mechanisms in these samples,the dependence of conductivity on temperature was measured over a wide range of temperature from 300 K down to liquid-helium temperatures. The conductivity of the films bears the relation  to temperature below 120 K,and it can be explained by the hopping conductance model proposed by Abeles et al,in which the transport of electrons is dominated by the hopping processes,and the origin of the activation energy is the Coulomb charging energy between particles. While at higher temperatures,the electrical transport mechanism is according with the fluctuation induced tunneling model,in which the thermally activated voltage fluctuations across insulating barriers plays an important role.

参考文献/References:

[1] Berkowitz A E, Mitchell J R, Carey M J, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys[J]. Physical Review Letters, 1992, 68(25):3745-3748.
[2] Pakhomov A B, Yan X, Zhao B. Giant Hall effect in percolating ferromagnetic granular metal-insulator films [J]. Applied Physics Letters, 1995, 67(23):3497-3499.
[3] Zhang X X, Wan C, Liu H, et al. Giant Hall effect in nonmagnetic granular metal films[J]. Physical Review Letters, 2001, 86(24):5562-5565.
[4] Wu Y N, Li Z Q, Lin J J. Giant Hall effect in nonmagnetic Mo/SnO2 granular films[J]. Physical Review B, 2010, 82:092202-1-092202-4.
[5] Ping D H, Ohnuma M, Hono K, et al. Microstructures of FePt-Al-O and FePt-Ag nanogranular thin films and their magnetic properties[J]. Journal of Applied Physics, 2001, 90(9):4708-4716.
[6] Stavroyiannis S, Panagiotopoulos I, Niarchos D, et al. CoPt/Ag nanocomposites for high density recording media[J]. Applied Physics Letters, 1998, 73(23):3453-3455.
[7] Gerber A. Towards Hall effect spintronics[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2):2749-2751.
[8] Hoffmann C, Mazari E, Lallet S, et al. Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles[J]. Nature Nanotechnology, 2013, 8(3):199-205.
[9] Abeles B, Sheng P, Coutts M D, et al. Structural and electrical properties of granular metal films[J]. Advances in Physics, 1975, 24(3):407-461.
[10] Hauser J J. Electrical and structural properties of amorphous metal-metal-oxide systems[J]. Physical Review B, 1973, 7(9):4099-4111.
[11] Tran T B, Beloborodov I S, Hu J, et al. Sequential tunneling and inelastic cotunneling in nanoparticle arrays [J]. Physical Review B, 2008, 78(7):075437-1-075437-9.
[12] Dugay J, Tan R P, Ibrahim M, et al. Charge transport and interdot coupling tuned by the tunnel barrier length in assemblies of nanoparticles surrounded by organic ligands[J]. Physical Review B, 2014, 89(4):041406-1-041406-5.
[13] Sheng P, Abeles B, Arie Y. Hopping conductivity in granular metals[J]. Physical Review Letters, 1973, 31(1):44-47.
[14] Sheng P, Klafter J. Hopping conductivity in granular disordered systems[J]. Physical Review B, 1983, 27(4):2583-2586.
[15] Chui T, Deutscher G, Lindenfeld P, et al. Conduction in granular aluminum near the metal-insulator transition [J]. Physical Review B, 1981, 23(11):6172-6175.
[16] ?imánek E. The temperature dependence of the electrical resistivity of granular metals[J]. Solid State Communications, 1981, 40(11):1021-1023.
[17] Beloborodov I S, Lopatin A V, Vinokur V M. Coulomb effects and hopping transport in granular metals[J]. Physical Review B, 2005, 72(12):125121-1-125121-20.
[18] Beloborodov I S, Lopatin A V, Vinokur V M, et al. Granular electronic systems[J]. Reviews of Modern Physics, 2007, 79(2):469-518.
[19] Li Z Q, Lin J J. Electrical resistivities and thermopowers of transparent Sn-doped indium oxide films[J]. Journal of Applied Physics, 2004, 96(10):5918-5920.
[20] Wu C Y, Thanh T V, Chen Y F, et al. Free-electronlike diffusive thermopower of indium tin oxide thin films[J]. Journal of Applied Physics, 2010, 108(12):123708-1-123708-3.
[21] Hsu Y W, Chiu S P, Lien A S, et al. Long electron dephasing length and disorder-induced spin-orbit coupling in indium tin oxide nanowires[J]. Physical Review B, 2010, 82(19):195429-1-195429-6.
[22] Hamberg I, Granqvist C G, Berggren K F, et al. Band-gap widening in heavily Sn-doped In2O3[J]. Physical Review B, 1984, 30(6):3240-3249.
[23] Liu X D, Jiang E Y, Zhang D X. Electrical transport properties in indium tin oxide films prepared by electron-beam evaporation[J]. Journal of Applied Physics, 2008, 104(7):073711-1-073711-5.
[24] M?bius A. Comment on‘Critical behavior of the zero-temperature conductivity in compensated silicon, Si:(P, B)’[J]. Physical Review B, 1989, 40(6):4194-4195.
[25] Park Y, Choong V, Gao Y, et al. Work function of indium tin oxide transparent conductor measured by pho-
toelectron spectroscopy[J]. Applied Physics Letters, 1996, 68(19):2699-2701.
[26] Williams R. Photoemission of electrons from silicon into silicon dioxide[J]. Physical Review, 1965, 140 (2A):A569-A575.
[27] Sheng P, Sichel E K, Gittleman J I. Fluctuation-induced tunneling conduction in carbon-polyvinylchlo-ride composites[J]. Physical Review Letters, 1978, 40(18):1197-1200.
[28] Sheng P. Fluctuation-induced tunneling conduction in disordered materials[J]. Physical Review B, 1980, 21(6):2180-2195.
[29] Xie H, Sheng P. Fluctuation-induced tunneling conduction through nanoconstrictions[J]. Physical Review B, 2009, 79(16):165419-1-165419-10.
[30] Ederth J, Johnsson P, Niklasson G A, et al. Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles[J]. Physical Review B, 2003, 68(15):155410-1-155410-10.
[31] Sichel E K, Gittleman J I, Sheng P. Transport properties of the composite material carbon-poly(vinyl chloride)[J]. Physical Review B, 1978, 18(10):5712-5716.

备注/Memo

备注/Memo:
收稿日期: 2016-05-26; 修回日期: 2016-07-20.
作者简介: 李志青(1970—), 男, 教授.
通讯作者: 李志青, zhiqingli@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(11174216); 高等学校博士学科点专项科研基金资助项目(20120032110065).
Supported by the National Natural Science Foundation of China(No.,11174216)and the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.,20120032110065).
更新日期/Last Update: 2017-08-10