|本期目录/Table of Contents|

[1]王乾伟,钟登华,佟大威,等.基于数值模拟的注浆过程三维动态可视化[J].天津大学学报(自然科学版),2017,(08):788-795.[doi:10.11784/tdxbz201701016]
 Wang Qianwei,Zhong Denghua,Tong Dawei,et al.3D Dynamic Visualization of Grouting Process Based on Numerical Simulation[J].Journal of Tianjin University,2017,(08):788-795.[doi:10.11784/tdxbz201701016]
点击复制

基于数值模拟的注浆过程三维动态可视化()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年08
页码:
788-795
栏目:
建筑工程
出版日期:
2017-08-31

文章信息/Info

Title:
3D Dynamic Visualization of Grouting Process Based on Numerical Simulation
文章编号:
0493-2137(2017)08-0788-08
作者:
王乾伟 钟登华 佟大威 敖雪菲 王青松
天津大学水利工程仿真与安全国家重点实验室,天津 300072
Author(s):
Wang Qianwei Zhong Denghua Tong Dawei Ao Xuefei Wang Qingsong
State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
关键词:
注浆 三维地质模型 网格曲面重建技术 虚实耦合 三维动态可视化
Keywords:
grouting 3D geologic model mesh surface reconstruction technique virtual reality coupling 3D dynamic visualization
分类号:
TV512
DOI:
10.11784/tdxbz201701016
文献标志码:
A
摘要:
数值模拟是研究注浆过程的重要手段之一, 但是数值模拟无法动态展示注浆全过程.为解决这一问题, 本文对注浆全过程进行三维动态可视化, 从而使得“不可见”的注浆过程变得“可见”, 为注浆工程质量管理提供强有力的技术支持.基于耦合FVM法的混合模型, 本文对注浆全过程进行了三维数值模拟, 得到了注浆浆液时空分布规律; 结合TIN算法、边界表达技术和NURBS简化技术, 建立了注浆区域内的工程地质三维统一模型; 基于数值模拟成果和工程地质三维统一模型, 本文应用网格曲面重建技术、虚实耦合技术、纹理映射技术对注浆全过程进行三维动态可视化.工程实例研究表明三维可视化方法能真实、直观地反映注浆过程中浆液的扩散变化过程.
Abstract:
Numerical simulation is one of the important methods to study the grouting process, but numerical simulation can’t show the whole process of grouting dynamically. To address this issue, a dynamic visualization method is adopted to make the invisible grouting process become visible, which provides strong technical support for the quality control of grouting engineering. Based on the coupled FVM method, the 3D numerical simulation of the whole grouting process is carried out, and the temporal and spatial distribution law of grouting slurry is obtained. Combined with TIN algorithm, boundary expression technique and NURBS simplification technique, a 3D unified model of engineering geology in the grouting area is established. In this paper, 3D dynamic visualization of the grouting process is carried out by using mesh surface reconstruction technique, virtual reality coupling technique and texture mapping technology coupled numerical simulation results and 3D unified model of engineering geology. The case study demonstrates that 3D visualization could be an effective tool for presenting the dynamic changes of grouting slurry diffusion process visually and realistically.

参考文献/References:

[1] 卢鹏. 岩土边坡锚杆灌浆加固的研究与三维可视化模拟过程[D]. 天津:天津大学建筑工程学院, 2004.
Lu Peng. Research of Stablization of Cut Slope by Anchor Bolts Grouting and 3D Simulating Animation Process [D]. Tianjin:School of Civil Engineering, Tianjin University, 2004(in Chinese).
[2] 闫福根, 缪正建, 李明超, 等. 基于三维地质模型的坝基灌浆工程可视化分析[J]. 岩土工程学报, 2012, 34(3):567-572.
Yan Fugen, Miao Zhenjian, Li Mingchao, et al. Visual analysis for grouting engineering of dam foundation based on 3D geological model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3):567-572(in Chinese).
[3] Liu Jinyuan. Visualization of grout permeation inside transparent soil[C]//International Conference on Geotechnical & Earthquake Engineering. Chengdu, China, 2013:188-194.
[4] Yang M J, Yue Z Q, Lee P K K, et al. Prediction of grout penetration in fractured rocks by numerical simulation[J]. Canadian Geotechnical Journal, 2002, 39 (6):1384-1394.
[5] Sadmejad S A. Numerical solution and hydrodynamics of grout propagation in porous media [J]. Iranian Journal of Science and Technology Transaction B-Engineering, 2006, 30(B1):151-155.
[6] Wang S Y, Chan D H, Lam K C. Numerical and experimental studies of pressure-controlled cavity expansion in completely decomposed granite soils of Hong Kong[J]. Computers and Geotechnics, 2010, 37(7/8):977-990.
[7] Zhong Denghua, Li Mingcao, Song Lingguang, et a1. Enhanced NURBS model and visualization for large 3D geo engineering applications:An example from the Jinping first level hydropower engineering project China [J]. Computer and GeoSciences, 2006, 32(9):1270-1282.
[8] Kate S, Mahesh P. Application of smoothed particle hydrodynamics for modelling gated spillway flows [J]. Applied Mathematical Modelling, 2014, 38(17/18):4308-4322.
[9] 王青松. 南水北调工程采空区注浆数值模拟研究[D]. 天津:天津大学建筑工程学院, 2013.
Wang Qingsong. Study on the Numerical Simulation of the Goaf Grouting of the South-to-North Water Transfer Project[D]. Tianjin:School of Civil Engineering, Tianjin University, 2013(in Chinese).
[10] 周晓泉. 复杂边界条件下的三维紊流数值模拟研究[D]. 成都:四川大学水利水电学院, 2003.
Zhou Xiaoquan. Simulations of Three-Dimensional Turbulent Flow with Complex Boundary Conditions[D]. Chengdu:School of Water Conservancy and Hydropower Engineering, Sichuan University, 2003(in Chinese).
[11] 王晓玲, 张爱丽, 陈华鸿, 等. 三维溃坝洪水在复杂淹没区域演进的数值模拟[J]. 水利学报, 2012, 43(9):1025-1033.
Wang Xiaoling, Zhang Aili, Chen Huahong, et al. Three-dimensional numerical simulation of dam-break flood routing in the complex inundation areas [J]. Journal of Hydraulic Engineering, 2012, 43(9):1025-1033(in Chinese).
[12] 王晓玲, 王青松, 周正印, 等. 南水北调采空区三维宾汉姆流体紊流模拟[J]. 水利学报, 2013, 44(11):1295-1302.
Wang Xiaoling, Wang Qingsong, Zhou Zhengyin,
et al. 3D turbulent numerical simulation of Bingham fluid in the goaf grouting of the south-to-north water transfer project[J]. Journal of Hydraulic Engineering, 2013, 44(11):1295-1302(in Chinese).
[13] 李明超. 大型水利水电工程地质信息三维建模与分析
研究[D]. 天津:天津大学建筑工程学院, 2006.
Li Mingchao. 3D Modeling and Analysis of Engineering-Geological Information in Large Hydraulic and Hydroelectric Projects[D]. Tianjin:School of Civil Engineering, Tianjin University, 2006(in Chinese).
[14] Muller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications[C]// Sca 03:Acm Siggraph/Eurographics Symposium on Computer Animation. San Diego, California, USA, 2003:154-159.
[15] Yu Jihun, Greg T. Reconstructing surfaces of particle-based fluids using anisotropic kernels [J]. ACM Transactions on Graphics, 2013, 32(1):1-12.
[16] Koren Y, Carmel L. Visualization of labeled data using linear transformations[C]// IEEE Symposium on Information Visualization. Seattle, Washington, USA, 2003:121-128.
[17] 李辉. 椭球型元球SPH流体表面重构方法的改进研究[D]. 秦皇岛:燕山大学信息科学与工程学院, 2012.
Li Hui. Improvement and Verification on Anistropic Kernels Reconstruct SPH Fluid Surface[D]. Qinhuangdao:School of Information Science and Engineering, Yanshan University, 2012(in Chinese).
[18] William T R. Particle systems—A technique for modeling a class of fuzzy objects[J]. Computer Graphics, 1983, 17(3):359-376.
[19] Foster N, Fedkiw R. Practical animations of liquids[C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA, 2001:23-30.
[20] Liu Xiaojun, Zhong Denghua, Tong Dawei, et al. Dynamic visualization of storm surge flood routing based on three-dimensional numerical simulation [J]. Journal of Flood Risk Management, 2016, 9(2):136-153.

备注/Memo

备注/Memo:
收稿日期: 2017-01-15; 修回日期: 2017-03-25.
作者简介: 王乾伟(1988—), 男, 博士研究生, tjuwangqw@126.com.
通讯作者: 钟登华, dzhong@tju.edu.cn.
基金项目: 国家自然科学基金创新群体基金资助项目(51621092); 国家自然科学基金重大研究项目(91215301); 国家自然科学基金重点项目(51439005).
Supported by the Innovation Fund Project of National Natural Science Foundation of China(No.,51621092), the Major Program of the National Natural Science Foundation of China(No.,91215301)and the Key Program of the National Natural Science Foundation of China(No.,51439005).
更新日期/Last Update: 2017-08-10