|本期目录/Table of Contents|

[1]黄翔东,白瑞朋,靳旭康.基于频移补偿的全相位时移相位差频率估计[J].天津大学学报(自然科学版),2017,(06):649-655.[doi:10.11784/tdxbz201605069]
 Huang Xiangdong,Bai Ruipeng,Jin Xukang.All-Phase Time-Shift Phase Difference Frequency Estimation Based on Frequency Shift and Compensation[J].Journal of Tianjin University,2017,(06):649-655.[doi:10.11784/tdxbz201605069]
点击复制

基于频移补偿的全相位时移相位差频率估计()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年06
页码:
649-655
栏目:
电气自动化与信息工程
出版日期:
2017-06-19

文章信息/Info

Title:
All-Phase Time-Shift Phase Difference Frequency Estimation Based on Frequency Shift and Compensation
文章编号:
0493-2137(2017)06-0649-07
作者:
黄翔东 白瑞朋 靳旭康
天津大学自动化与信息工程学院,天津 300072
Author(s):
Huang Xiangdong Bai Ruipeng Jin Xukang
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
关键词:
频率估计 全相位FFT 时移相位差 卷积窗 克拉美罗限
Keywords:
frequency estimate all-phase FFT time-shift phase difference convolution window Cramer-Rao bound
分类号:
TN911.72
DOI:
10.11784/tdxbz201605069
文献标志码:
A
摘要:
针对精确估计信号频率问题, 对经典全相位时移相位差估计器做了估计性能改进.通过深入剖析研究卷积窗类型和频率偏离值对全相位FFT峰值谱幅度的影响, 进而提出两项改进措施:在全相位数据处理环节引入无窗卷积窗, 在原有估计器的输出引入入频移补偿.使得不管频率怎样偏离, 峰值谱总能接近理想幅值, 从而既提高了估计器抵御噪声的能力, 又显著提高了估计器的精度.实验结果表明, 该方法的改进估计器, 其精度高于原有的全相位时移相位差法和改进的Candan估计器, 且对于任意频偏情况, 其频率估计方差均紧靠克拉美罗限, 具有较广泛的应用前景.
Abstract:
For the issue of accurately estimating a signal’s frequency,an essential innovation on the classical all-phase time-shift phase difference frequency estimator was proposed. By exploring the mechanism of how the con-volution window and the frequency offset affect the magnitude of all-phase FFT peak spectral bin,two improvement measures were put forth: A no-window convolution window was incorporated in all-phase data preprocessing; Techniques of frequency offset and compensation were applied to the output of original estimator. These two measures ensure that the peak spectral bin’s magnitude approximates the ideal amplitude in any case of frequency offset,thereby enhancing the robustness to noise and the estimator’s accuracy significantly. Simulation results showthat,no matter how the frequency offset varies,the proposed estimator possesses a higher accuracy than the original all-phase time-shift phase difference frequency estimator and the improved Candan estimator. Furthermore,the frequency estimate variance of the proposed estimator approximates the Cramer-Rao lower bound for any case of frequency offset,which presents vast potential for future development.

参考文献/References:

[1] Urbanek J, Barszcz T, Antoni J. A two-step procedure for estimation of instantaneous rotational speed with large fluctuations[J]. Mechanical Systems and Signal Processing, 2013, 38(1):96-102.
[2] Wang W Q, So H C. Transmit subaperturing for range and angle estimation in frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2014, 62(8):2000-2011.
[3] Xu Y, Yuan Q, Zou J, et al. Analysis of triangular periodic carrier frequency modulation on reducing electromagnetic noise of permanent magnet synchronous motor[J]. IEEE Transactions on Magnetics, 2012, 48(11):4424-4427.
[4] 齐国清, 贾欣乐. 插值 FFT 估计正弦信号频率的精度分析[J]. 电子学报, 2004, 32(4):625-629.
Qi Guoqing, Jia Xinle. Accuracy analysis of frequency estimation of sinusoid based on interpolated FFT[J]. Acta Electronica Sinica, 2004, 32(4):625-629(in Chinese).
[5] Aboutanios E, Mulgrew B. Iterative frequency estimation by interpolation on Fourier coefficients[J]. IEEE Transactions on Signal Processing, 2005, 53(4):1237-1242.
[6] 丁康, 钟舜聪. 通用的离散频谱相位差校正方法 [J]. 电子学报, 2003, 31(1):142-145.
Ding Kang, Zhong Shuncong. A Universal phase diference correcting methods on discrete spectrum[J]. Acta Electronica Sinica, 2003, 31(1):142-145(in Chinese).
[7] 齐国清, 贾欣乐. 基于 DFT 相位的正弦波频率和初相的高精度估计方法[J]. 电子学报, 2001, 29(9):1164-1167.
Qi Guoqing, Jia Xinle. High-accuracy frequency and phase estimation of single-tone bas ed on phase of DFT [J]. Acta Electronica Sinica, 2001, 29(9):1164-1167(in Chinese).
[8] 齐国清. 利用FFT相位差校正信号频率和初相估计的误差分析[J]. 数据采集与处理, 2003, 18(1):7-11.
Qi Guoqing. Error analysis of frequency and phase estimations based on phase difference of segmented FFTs [J]. Journal of Data Acquisition & Processing, 2003, 18(1):7-11(in Chinese).
[9] 黄翔东, 王兆华. 全相位时移相位差频谱校正法[J]. 天津大学学报, 2008, 41(7):815-820.
Huang Xiangdong, Wang Zhaohua. All-phase time-shift phase difference correcting spectrum method[J]. Journal of Tianjin University, 2008, 41(7):815-820(in Chinese).
[10] 黄翔东, 王兆华. 基于全相位频谱分析的相位差频谱校正法[J]. 电子与信息学报, 2008, 30(2):293-297.
Huang Xiangdong, Wang Zhaohua. All-phase time-shift phase dif-ference correcting spectrum method[J]. Journal of Electronics & Information Technology, 2008, 30(2):293-297(in Chinese).
[11] 张涛, 任志良, 陈光, 等. 改进的全相位时移相位差频谱分析算法[J]. 系统工程与电子技术, 2011, 33(7):1468-1472.
Zhang Tao, Ren Zhiliang, Chen Guang, et al. Improved spectrum analysis algorithm for all-phase time-shift phase difference[J]. Systems Engineering and Electronics, 2011, 33(7):1468-1472(in Chinese).
[12] 安国臣, 张秀清, 王晓君, 等. 离散频谱的加权相位差校正方法 [J]. 信号处理, 2012, 28(1):99-104.
An Guochen, Zhang Xiuqing, Wang Xiaojun, et al. Weighting phase difference correcting methods on discrete spectrum[J]. Signal Processing, 2012, 28(1):99-104(in Chinese).
[13] 黄翔东, 孟天伟, 丁道贤, 等. 前后向子分段相位差频率估计法[J]. 物理学报, 2014, 63(21):194-200.
Huang Xiangdong, Meng Tianwei, Ding Daoxian, et al. A novel phase difference frequency estimator based on forward and backward sub-segmenting[J]. Acta Physica Sinica, 2014, 63(21):194-200(in Chinese).
[14] 杨宇祥, 樊巨宝. 全相位时移相位差法在电力谐波检测中的应用[J]. 电测与仪表, 2012, 49(7):24-28.
Yang Yuxiang, Fan Jubao. Application of the all-phase time-shift phase difference method in the power harmonic detection[J]. Electrical Measurement & Instrumentation, 2012, 49(7):24-28(in Chinese).
[15] 杨颖, 李醒飞, 李洪宇, 等. 基于激光自混合效应的加速度传感器[J]. 光学学报, 2013, 33(2):234-240.
Yang Ying, Li Xingfei, Li Hongyu, et al. Acceleara-tion sensor based on laser self-mixing interference[J]. Acta Opitica Sinica, 2013, 33(2):234-240(in Chinese).
[16] 王兆华, 黄翔东. 数字信号全相位谱分析与滤波技术 [M]. 北京:电子工业出版社, 2009.
Wang Zhaohua, Huang Xiangdong. Techniques of All-phase Spectral Analysis and Filtering of Digital Signals [M]. Beijing:Electronic Industry Press, 2009(in Chinese).
[17] 黄翔东, 王兆华, 罗蓬, 等. 全相位FFT密集谱识别与校正 [J]. 电子学报, 2011, 39(1):172-177.
Huang Xiangdong, Wang Zhaohua, Luo Peng, et al. Discrimination and correction for dense all phase FFT spectrums[J]. Acta Electronica Sinica, 2011, 39(1):172-177(in Chinese).
[18] 于树海, 王建立, 董磊, 等. 基于全相位谱分析的傅里叶望远镜外场实验数据处理 [J]. 光学精密工程, 2012, 20(10):2275-2282.
Yu Shuhai, Wang Jianli, Dong Lei, et al. Field experiment data processing of Fourier telescopy based on all phas spectrum analysis[J]. Optics and Precision Engineering, 2012, 20(10):2275-2282(in Chinese).
[19] 彭祥华, 周群, 曹晓燕. 一种高精度的电网谐波/间谐波检测的组合优化算法 [J]. 电力系统保护与控制, 2014, 42(23):95-101.
Peng Xianghua, Zhou Qun, Cao Xiaoyan. A high precision combinational optimization algorithm of power grid harmonic/inter-harmonic signal detection [J]. Power System Protection and Control, 2014, 42(23):95-101(in Chinese).
[20] Rife D, Boorstyn R. Single tone parameter estimation from discrete-time observations[J]. IEEE Transactions on Information Theory, 1974, 20(5):591-598.
[21] Candan C. A method for fine resolution frequency estimation from three DFT samples[J]. IEEE Signal Processing Letters, 2011, 18(6):351-354.
[22] Candan C. Analysis and further improvement of fine resolution frequency estimation method from three DFT samples[J]. IEEE Signal Processing Letters, 2013, 20(9):913-916.

备注/Memo

备注/Memo:
收稿日期: 2016-05-19; 修回日期: 2016-05-31.
作者简介: 黄翔东(1979—), 男, 博士, 副教授.
通讯作者: 黄翔东, laohuang0423@163.com.
基金项目: 国家自然科学基金资助项目(61671012).
Supported by the National Natural Science Foundation of China(No. 61671012).
更新日期/Last Update: 2017-06-10