|本期目录/Table of Contents|

[1]郑华康,胡超,尚钦,等.大型地下厂房洞室群围岩开挖松弛效应与渗透性演化特征[J].天津大学学报(自然科学版),2017,(06):624-636.[doi:10.11784/tdxbz201512063]
 Zheng Huakang,Hu Chao,Shang Qin,et al.Excavation-Induced Relaxation Effects and Evolution of Hydraulic Conductivity in Surrounding Rocks of Large-Scale Underground Caverns[J].Journal of Tianjin University,2017,(06):624-636.[doi:10.11784/tdxbz201512063]
点击复制

大型地下厂房洞室群围岩开挖松弛效应与渗透性演化特征()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年06
页码:
624-636
栏目:
建筑工程
出版日期:
2017-06-19

文章信息/Info

Title:
Excavation-Induced Relaxation Effects and Evolution of Hydraulic Conductivity in Surrounding Rocks of Large-Scale Underground Caverns
文章编号:
0493-2137(2017)06-0624-13
作者:
郑华康12 胡超13 尚钦2 刘明明1 陈益峰1
1. 武汉大学水资源与水电工程科学国家重点实验室,武汉430072;2. 长江勘测规划设计研究院,武汉430010;3. 长江水利委员会长江科学院,武汉430014
Author(s):
Zheng Huakang12 Hu Chao13 Shang Qin2 Liu Mingming1 Chen Yifeng1
1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
2. Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China
3.Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, Wuhan 430014, China
关键词:
开挖松弛效应 地下厂房 渗透性演化 渗控效应
Keywords:
excavation-induced relaxation effect underground powerhouse hydraulic conductivity evolution seepage control effects
分类号:
TV61
DOI:
10.11784/tdxbz201512063
文献标志码:
A
摘要:
锦屏一级水电站地下厂房洞室群开挖规模巨大, 赋存于极高至高地应力和低强度岩体环境下, 且受f13、f14、f18断层切割, 其围岩稳定性将成为影响工程安全和正常运行的重要因素之一.结合现场声波监测资料, 采用裂隙岩体等效弹塑性本构模型以及基于Hoek-Brown参数的偏应力破坏准则对开挖松弛区进行模拟与评价.此外, 重点关注洞室群围岩在地下厂房开挖过程中渗透特性的演化, 并采用SVA方法对其防渗排水措施的渗控效应进行分析与评价.研究结果表明:采用塑性屈服区以及偏应力破坏准则表征围岩开挖松弛效应是合理的, 高地应力、低强度应力比是造成锦屏一级地下厂房围岩开挖松弛区较大的主要原因; 洞室群围岩在地下厂房开挖过程中渗透特性可增大3个数量级, 影响范围达35 m; 围岩渗透特性演化对渗流场具有显著影响, 影响程度取决于与洞室群的距离以及防渗排水措施的渗控效应.
Abstract:
With large-scale excavation,Jinping-Ⅰ underground powerhouse is subjected to extremely high to high in-situ geostress. The surrounding rocks are of low uniaxial compressive strength and cut through by f13,f14 and f18 faults. Therefore,the stability of surrounding rocks would be an important factor which could affect the safety and normal operation of the project. Combined with sonic wave monitoring data,the excavation-induced relaxation zones were assessed with an equivalent elasto-plastic model and a constant deviatoric stress criterion based on the Hoek-Brown parameters of the surrounding rocks,respectively. Besides,special attention was paid to the hydraulic conductivity evolution of surrounding rocks during the excavation process,and the seepage control effects were analyzed and assessed by the SVA method. The results show that: It was reasonable to characterize the excavation-induced relaxation effects with plastic yield zones and constant deviatoric stress criterion,and high geostress and low strength-stress ratio were the main factors leading to large relaxation zones of Jinping-Ⅰ underground powerhouse; the hydraulic conductivity of surrounding rocks could increase by 3 orders of magnitude during the excavation process with the influence scope reaching 35 m; the hydraulic conductivity evolution could significantly influence the seepage field,which was mainly decided by the distance to the caverns and the seepage control effects.

参考文献/References:

[1] Bizjak K F, Petkov?ek B. Displacement analysis of tunnel support in soft rock around a shallow highway tunnel at Golovec [J]. Engineering Geology, 2004, 75(1):89-106.
[2] Li S, Yu H, Liu Y, et al. Results from in-situ monitoring of displacement, bolt load, and disturbed zone of a powerhouse cavern during excavation process [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8):1519-1525.
[3] Deng J H, Lee C F, Ge X R. Characterization of the disturbed zone in a large rock excavation for the Three Gorges Project[J]. Canadian Geotechnical Journal, 2001, 38(1):95-106.
[4] Lu W B, Hu Y G, Yang J H, et al. Spatial distribution of excavation induced damage zone of high rock slope[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64:181-191.
[5] Cai M, Kaiser P K, Martin C D. Quantification of rock mass damage in underground excavations from microseismic event monitoring[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(8):1135-1145.
[6] Malmgren L, Saiang D, T?yr? J, et al. The excavation disturbed zone (EDZ)at Kiirunavaara mine, Sweden—by seismic measurements[J]. Journal of Applied Geophysics, 2007, 61(1):1-15.
[7] Wu F, Liu J, Liu T, et al. A method for assessment of excavation damaged zone(EDZ)of a rock mass and its application to a dam foundation case[J]. Engineering Geology, 2009, 104(3):254-262.
[8] Li S J, Feng X T, Wang C Y, et al. ISRM suggested method for rock fractures observations using a borehole digital optical televiewer [J]. Rock Mechanics and Rock Engineering, 2013, 46(3):635-644.
[9] Suzuki K, Nakata E, Minami M, et al. Estimation of the zone of excavation disturbance around tunnels, using resistivity and acoustic tomography[J]. Exploration Geophysics, 2004, 35(1):62-69.
[10] Gibert D, Nicollin F, Kergosien B, et al. Electrical tomography monitoring of the excavation damaged zone of the Gallery04 in the Mont Terri rock laboratory:Field experiments, modelling, and relationship with structural geology[J]. Applied Clay Science, 2006, 33(1):21-34.
[11] Sato T, Kikuchi T, Sugihara K. In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, central Japan[J]. Engineering Geology, 2000, 56(2):97-108.
[12] 李文慧. 二滩水电站地下厂房洞室群监测设计及其实施[J]. 岩石力学与工程学报, 1999, 18(增1):1202-1205.
Li Wenhui. Monitoring design and its application of underground caverns in Ertan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(Suppl 1):1202-1205(in Chinese).
[13] 邹红英, 肖明. 地下洞室开挖松动圈评估方法研究[J]. 岩石力学与工程学报, 2010, 29(3):513-519.
Zou Hongying, Xiao Ming. Study of methodology for assessment of excavation disturbed zone of underground caverns[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3):513-519(in Chinese).
[14] 李金河, 伍文锋, 李建川. 溪洛渡水电站超大型地下厂房洞室群岩体工程控制与监测[J]. 岩石力学与工程学报, 2013, 32(1):8-14.
Li Jinhe, Wu Wenfeng, Li Jianchuan. Control and monitoring of rock mass engineering of super large underground powerhouse cavern groups at Xiluodu Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1):8-14(in Chinese).
[15] 朱泽奇, 盛谦, 张勇慧, 等. 大岗山水电站地下厂房洞室群围岩开挖损伤区研究[J]. 岩石力学与工程学报, 2013, 32(4):734-739.
Zhu Zeqi, Sheng Qian, Zhang Yonghui, et al. Research on excavation damage zone of underground powerhouse of Dagangshan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4):734-739(in Chinese).
[16] Sheng Q, Yue Z Q, Lee C F, et al. Estimating the excavation disturbed zone in the permanent shiplock slopes of the Three Gorges Project, China[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2):165-184.
[17] Chen S H, Wang G J, Zhou H, et al. Evaluation of excavation‐induced relaxation and its application to an arch dam foundation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(2):166-181.
[18] Cai M, Kaiser P K. Assessment of excavation damaged zone using a micromechanics model[J]. Tunnelling and Underground Space Technology, 2005, 20(4):301-310.
[19] Martin C D, Kaiser P K, McCreath D R. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels[J]. Canadian Geotechnical Journal, 1999, 36(1):136-151.
[20] Pusch R. Alteration of the hydraulic conductivity of rock by tunnel excavation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(1):79-83.
[21] Kelsall P C, Case J B, Chabannes C R. Evaluation of excavation-induced changes in rock permeability[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(3):123-135.
[22] Souley M, Homand F, Pepa S, et al. Damage-induced permeability changes in granite:A case example at the URL in Canada[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2):297-310.
[23] Snow D T. Anisotropie permeability of fractured media [J]. Water Resources Research, 1969, 5(6):1273-1289.
[24] Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses [J]. Water Resources Research, 1986, 22(13):1845-1856.
[25] Zhou C B, Sharma R S, Chen Y F, et al. Flow-stress coupled permeability tensor for fractured rock masses [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(11):1289-1309.
[26] Liu J, Elsworth D, Brady B H. Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5):581-596.
[27] Chen Y, Zhou C, Sheng Y. Formulation of strain-dependent hydraulic conductivity for a fractured rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7):981-996.
[28] Chen Y, Zhou C, Zheng H. A numerical solution to seepage problems with complex drainage systems[J]. Computers and Geotechnics, 2008, 35(3):383-393.
[29] Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3):283-353.
[30] Pande G N, Xiong W. An improved multi-laminate model of jointed rock masses[C]//International Symposium on Numerical Models in Geomechanics. Zürich, Switzerland, 1982:218-225.
[31] Chen S H, Egger P. Three dimensional elasto-viscoplastic finite element analysis of reinforced rock masses and its application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(1):61-78.
[32] Li Y, Chen Y F, Jiang Q H, et al. Performance assessment and optimization of seepage control system:A numerical case study for Kala underground powerhouse [J]. Computers and Geotechnics, 2014, 55:306-315.
[33] 卢波, 王继敏, 丁秀丽, 等. 锦屏一级水电站地下厂房围岩开裂变形机制研究[J]. 岩石力学与工程学报, 2010, 29(12):2429-2441.
Lu Bo, Wang Jimin, Ding Xiuli, et al. Study of deformation and cracking mechanism of surrounding rock of Jinping I underground powerhouse [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12):2429-2441(in Chinese).
[34] Hoek E, Brown E T. Underground Excavations in Rock [M]. London:Institute of Mining and Metallurgy, 1980.
[35] Bieniawski Z T. Engineering Rock Mass Classification [M]. New York:John Wiley & Sons, 1989.
[36] Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6):643-659.
[37] 汪斌, 朱杰兵, 严鹏, 等. 大理岩损伤强度的识别及基于损伤控制的参数演化规律[J]. 岩石力学与工
程学报, 2012, 31(3):3967-3973.
Wang Bin, Zhu Jiebing, Yan Peng, et al. Damage strength determination of marble and its parameters evaluation based on damage control test[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3):3967-3973(in Chinese).
[38] B?ckblom G, Martin C D. Recent experiments in hard rocks to study the excavation response:Implications for the performance of a nuclear waste geological repository [J]. Tunnelling and Underground Space Technology, 1999, 14(3):377-394.
[39] Read R S. 20 years of excavation response studies at AECL’s underground research laboratory[J]. Interna-tional Journal of Rock Mechanics and Mining Sciences, 2004, 41(8):1251-1275.
[40] Hudson J A, B?ckstr?m A, Rutqvist J, et al. Characterising and modelling the excavation damaged zone in crystalline rock in the context of radioactive waste disposal[J]. Environmental Geology, 2009, 57(6):1275-1297.

备注/Memo

备注/Memo:
收稿日期: 2015-12-18; 修回日期: 2016-07-25.
作者简介: 郑华康(1990—), 男, 博士, 工程师.
通讯作者: 郑华康, zhengzeci@whu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2011CB013503); 国家自然科学基金资助项目(51609019).
Supported by the National Basic Research Program of China(No. 2011CB013503)and the National Natural Science Foundation of China(No. 51609019).
更新日期/Last Update: 2017-06-10