|本期目录/Table of Contents|

[1]韩庆华,张学哲,徐颖.正放四角锥网架敏感性分析及抗连续倒塌性能[J].天津大学学报(自然科学版),2017,(06):610-617.[doi:10.11784/tdxbz201601079]
 Han Qinghua,Zhang Xuezhe,Xu Ying.Sensitive Analysis and Anti-Progressive Collapse Performance of Square Pyramid Space Grids[J].Journal of Tianjin University,2017,(06):610-617.[doi:10.11784/tdxbz201601079]
点击复制

正放四角锥网架敏感性分析及抗连续倒塌性能()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年06
页码:
610-617
栏目:
建筑工程
出版日期:
2017-06-19

文章信息/Info

Title:
Sensitive Analysis and Anti-Progressive Collapse Performance of Square Pyramid Space Grids
文章编号:
0493-2137(2017)06-610-08
作者:
韩庆华12 张学哲1 徐颖13
1. 天津大学建筑工程学院,天津 300072;2. 滨海土木工程结构与安全教育部重点实验室(天津大学),天津 300072;3. 天津大学水利工程仿真与安全国家重点实验室,天津 300072
Author(s):
Han Qinghua12 Zhang Xuezhe1 Xu Ying13
1.School of Civil Engineering, Tianjin University, Tianjin 300072, China
2.Key Laboratory of Coast Civil Structure Safety(Tianjin University), Ministry of Education, Tianjin 300072, China
3.State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
关键词:
网架结构 连续倒塌 冗余度指标 敏感构件 关键构件
Keywords:
sace grid structure progressive collapse redundancy indices sensitive component key component
分类号:
TU393.3
DOI:
10.11784/tdxbz201601079
文献标志码:
A
摘要:
为揭示正放四角锥网架的连续倒塌破坏机理, 采用备用荷载路径法并结合基于构件承载能力的敏感性评价指标, 对正放四角锥平板网架进行动力非线性分析, 模拟了结构的连续倒塌破坏过程, 分析了厚跨比、跨度和支承形式对网架结构抗连续倒塌性能的影响.分析结果表明, 周边点支承正放四角锥网架结构中部下弦杆、中间支座处腹杆为敏感构件, 结构中部上弦杆、中间支座周围腹杆和上弦杆为关键构件; 周边支承网架冗余度指标分布规律与周边点支承网架相似, 冗余度指标小于周边点支承网架; 点支承网架角支座腹杆和上弦杆为敏感构件, 敏感构件相邻腹杆及中间支座腹杆为关键构件.通过加强关键构件的截面尺寸, 可以显著提高结构的抗连续倒塌性能.正放四角锥网架冗余度指标分布规律不随厚跨比、跨度的变化而改变, 冗余度指标大小与网架厚跨比、设计应力比成正比, 而与模型跨度关系不大.
Abstract:
In order to reveal the progressive collapse mechanism of square pyramid space girds,a dynamic nonlinear analysis using alternate path method and sensitive indices based on bearing capacity of members was conducted. The progressive collapse process of structure was simulated,and the influence of span-thickness ratio,structural span and supporting form on the progressive collapse performance was analyzed. The results indicate that the sensitive components of square pyramid space grids with perimeter-point supports are the bottom chords in the center and the web members at intermediate supports,while the key components are the upper chords in the center and the upper chords and web members at intermediate supports. The distribution regularities of redundancy indices in grids with perimeter supports are similar to those of grids with perimeter-point supports,and the redundancy indices are much smaller. The sensitive components of grids with point supports are the upper chords and web members at corner supports,while the web members adjacent to the sensitive components and at the intermediate supports are the key members. By reinforcing the sectional dimensions of key components,the anti-progressive collapse performance of the structure can be significantly enhanced. The distribution regularities of redundancy indices do not change with the span-thickness ratio or structural span,and the value is proportional to span-thickness ratio and designed stress ratio but less related to structural span.

参考文献/References:

[1] Pearson C, Delatte N. Ronan point apartment tower collapse and its effect on building codes[J]. Journal of Performance of Constructed Facilities, 2005, 19(2):172-177.
[2] Mlakar P F, Dusenberry D, Harris J. The Pentagon Building Performance Report[M]. Virginia:ASCE, 2003.
[3] General Service Administration. Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects[S]. Washington, DC, USA, 2003.
[4] United State Department of Defense. Design of Building to Resist Progressive Collapse. Unified Facility Criteria. UFC 4-023-03[S]. Washington, DC, USA, 2010.
[5] Song B I, Sezen H. Experimental and analytical progressive collapse assessment of a steel frame building [J]. Engineering Structures, 2013, 56(6):664-672.
[6] Kim J, Kim T. Assessment of progressive collapse-resisting capacity of steel moment frames [J]. Journal of Constructional Steel Research, 2009, 65(1):169-179.
[7] Szyniszewski S, Krauthammer T. Energy flow in progressive collapse of steel framed buildings [J]. Engineering Structures, 2012, 42(12):142-153.
[8] Khandelwal K, El-Tawil S, Kunnath S K, et al. Macromodel-based simulation of progressive collapse:Steel frame structures[J]. Journal of Structural Engineering, 2008, 134(7):1070-1078.
[9] Jiang X, Chen Y. Progressive collapse analysis and safety assessment method for steel truss roof[J]. Journal of Performance of Constructed Facilities, 2012, 26(3):230-240.
[10] 王磊, 陈以一, 李玲, 等. 引入初始破坏的桁梁结构倒塌试验研究[J]. 同济大学学报:自然科学版, 2010, 38(5):644-649.
Wang Lei, Chen Yiyi, Li Ling, et al. Experimental study on beam-truss structure model by introducing incipient failure in collapse[J]. Journal of Tongji University:Natural Science, 2010, 38(5):644-649(in Chinese).
[11] 赵宪忠, 闫伸, 陈以一. 大跨度空间结构连续性倒塌研究方法与现状[J]. 建筑结构学报, 2013, 34(4):1-14.
Zhao Xianzhong, Yan Shen, Chen Yiyi. A review on progressive collapse study for large-span space structures [J]. Journal of Building Structures, 2013, 34(4):1-14(in Chinese).
[12] 陈骥. 美国哈特福德城体育馆网架结构失稳事故分析[J]. 钢结构, 1997, 12(4):20-25, 42.
Chen Ji. On the analysis of American Hartford Coliseum space truss roof stability failure [J]. Steel Construction, 1997, 12(4):20-25, 42(in Chinese).
[13] 甘明, 石光磊, 冯远, 等. 汶川地震中空间结构震害分析[C]// 第13届空间结构学术会议论文集. 深圳, 中国, 2010:64-68.
Gan Ming, Shi Guanglei, Feng Yuan, et al. Seismic damage analysis on spatial structure under Wenchuan earthquake[C]//The 13rd Academic Conference on Spatial Structure. Shenzhen, China, 2010:64-68(in Chinese).
[14] 江晓峰, 陈以一. 建筑结构连续倒塌及其控制设计的研究现状[J]. 土木工程学报, 2008, 41(6):1-8.
Jiang Xiaofeng, Chen Yiyi. A review on the progressive collapse and control design of building structures[J]. China Civil Engineering Journal, 2008, 41(6):1-8(in Chinese).
[15] Pandey P C, Barai S V. Structural sensitivity as a measure of redundancy[J]. Journal of Structural Engineering, 1997, 123(3):360-364.
[16] 蔡建国, 王蜂岚, 冯健, 等. 大跨空间结构连续倒塌分析若干问题探讨[J]. 工程力学, 2012, 29(3):143-149.
Cai Jianguo, Wang Fenglan, Feng Jian, et al. Discussion on the progressive collapse analysis of long-span space structures[J]. Engineering Mechanics, 2012, 29(3):143-149(in Chinese).
[17] 汪毅俊, 吴慧. 基于网架结构极限承载力的优化设计方法[J]. 空间结构, 2010, 16(3):34-40.
Wang Yijun, Wu Hui. Optimized design method of space grid structures based on the ultimate bearing capacity[J]. Spatial Structures, 2010, 16(3):34-40(in Chinese).
[18] 周列武. 正放四角锥网架结构连续倒塌机理与抗倒塌设计研究[D]. 徐州:中国矿业大学力学与土木工程学院, 2014.
Zhou Liewu. Research on Progressive Collapse Mechanism and Prevention Methods of Pyramid Space Truss Structure[D]. Xuzhou:School of Mechanics and Civil Engineering, China University of Mining and Technology, 2014(in Chinese).
[19] JGJ7—2010空间网格结构技术规程[S]. 北京:中国建筑工业出版社, 2011.
JGJ7—2010Technical Specification for Space Frame Structures[S]. Beijing:China Architecture and Building Press, 2011(in Chinese).
[20] 徐颖, 韩庆华, 芦燕. 考虑损伤累积效应的拱形立体桁架结构倒塌分析[J]. 土木建筑与环境工程, 2014, 36(4):1-8.
Xu Ying, Han Qinghua, Lu Yan. Progressive collapse analysis of steel trussed arch structure considering damage cumulative effect[J]. Journal of Civil, Architectural & Environment Engineering, 2014, 36(4):1-8(in Chinese).

备注/Memo

备注/Memo:
收稿日期: 2016-01-25; 修回日期: 2016-08-08.
作者简介: 韩庆华(1971—), 男, 博士, 教授, qhhan@tju.edu.cn.
通讯作者: 徐颖, yingxu_civil@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(51525803); 住房和城乡建设部科学技术计划资助项目(2016-K5-010).
Supported by the National Natural Science Foundation of China(No. 51525803) and the Science and Technology Program of Ministry of
Housing and Urban-Rural Development(No. 2016-K5-010).
更新日期/Last Update: 2017-06-10