|本期目录/Table of Contents|

[1]谢志江,郭宗环,宋代平,等.用于月壤采样试验验证机构的运动学分析[J].天津大学学报(自然科学版),2017,(06):586-592.[doi:10.11784/tdxbz201603018]
 Xie Zhijiang,Guo Zonghuan,Song Daiping,et al.Kinematics Analysis of Mechanism for Lunar Soil Sampling Test Verification[J].Journal of Tianjin University,2017,(06):586-592.[doi:10.11784/tdxbz201603018]
点击复制

用于月壤采样试验验证机构的运动学分析()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年06
页码:
586-592
栏目:
机械工程
出版日期:
2017-06-19

文章信息/Info

Title:
Kinematics Analysis of Mechanism for Lunar Soil Sampling Test Verification
文章编号:
0493-2137(2017)06-0586-07
作者:
谢志江1 郭宗环1 宋代平1 姚猛2
1. 重庆大学机械传动国家重点实验室,重庆 400044;2. 中国空间技术研究院,北京 100094
Author(s):
Xie Zhijiang1 Guo Zonghuan1 Song Daiping1 Yao Meng2
1.State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
2.China Academy of Space Technology, Beijing 100094, China
关键词:
采样封装 并联机构 封闭矢量 牛顿-迭代法 1阶影响系数法 激光跟踪仪
Keywords:
sampling and packaging parallel mechanism closed vector Newton iterative method first-order influence coefficient method laser tracker
分类号:
TH242
DOI:
10.11784/tdxbz201603018
文献标志码:
A
摘要:
以月壤采样封装专项试验验证为基础, 设计了一套实现姿态调整的3自由度并联机构.根据机构运动特点利用修正的G-K公式求解机构自由度.建立机构封闭矢量图求解得到运动学逆解, 得到3根驱动杆杆长.用1阶影响系数法求解机构速度雅可比矩阵.采用Adams与Matlab对比验证该机构的运动学逆解的正确性; 采用牛顿-迭代法求解机构运动学正解, 并借助于激光跟踪仪测试以验证求解正解的正确性.结果表明, 、角度误差为0.02°, z方向的误差为0.01 mm, 该机构可满足开展相关采样封装专项试验验证的要求.
Abstract:
Based on the experimental verification of the lunar soil sampling and packaging,a novel parallel mechanism with three degrees of freedom is designed. In accordance with the motion characteristics of the mechanism,the degrees of freedom was calculated by modified G-K formula. By utilizing the closed vector,the solution to the inverse kinematics and three driving rods were obtained. Velocity Jacobian matrix was derived with the first-order influence coefficient method. Adams and Matlab were used in verifying the correctness of the inverse kinematics of the mechanism. The problem of forward kinematics was solved by Newton iterative method. The correctness of the solution was verified with the help of the laser tracker tests. The results show that the errors of  and  are both 0.02°,and the error of z is 0.01 mm,which proves that the mechanism could meet the requirements of the relevant sampling and packaging.

参考文献/References:

[1] 欧阳自远. 我国月球探测的总体科学目标与发展战略[J]. 地球科学与进展, 2004, 19(3):352-358.
Ouyang Ziyuan. Scientific objectives of Chinese lunar exploration project and development strategy[J]. Advance in Earth Sciences, 2004, 19(3):352-358(in Chinese).
[2] 钟坦. 中国探月工程前景广阔[J]. 国际太空, 2007(12):1-7.
Zhong Tan. China lunar exploration prospects[J]. Space International, 2007(12):1-7(in Chinese).
[3] Stewart D. A platform with six degrees of freedom[C]// Proceedings of the Institute of Mechanical Engineers. London, UK, 1965, 180(15):371-386.
[4] Dasgupta B, Mruthyunjaya T S. The Stewart platform manipulator:A review[J]. Mechanism and Machine Theory, 2000, 35(5):15-40.
[5] 齐明, 刘海涛, 梅江平, 等. 3-PUS/PU 3自由度并联机构运动学优化设计[J]. 天津大学学报, 2007, 40(6):649-654.
Qi Ming, Liu Haitao, Mei Jiangping, et al. Kinematics optimum design of a 3-DOF parallel mechanism with 3-PUS/PU architecture[J]. Journal of Tianjin University, 2007, 40(6):649-654. (in Chinese).
[6] Li Yangmin, Xu Qingsong. A new approach to the architecture optimization of a general 3-PUU translational parallel manipulator[J]. Journal of Intelligent and Robotic Systems, 2006, 46(1):59-72.
[7] 崔国华, 张海强, 徐丰, 等. 空间3-PUS-UP并联机构运动灵巧性与刚度性能研究[J]. 农业机械学报, 2014, 45(12):348-354.
Cui Guohua, Zhang Haiqiang, Xu Feng, et al. Kinematic dexterity and stiffness performance of spatial 3-PUS-UP parallel manipulator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12):348-354(in Chinese).
[8] Merlet J P. Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis[J]. International Journal of Robotics Research, 2004, 23(3):221-235.
[9] Masouleh M T, Gosselin C, Saadatzi M H, et al. Kinematic analysis of 5-RPUR(3T2R)parallel mechanisms [J]. Meccanica, 2011, 46(1):131-146.
[10] 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京:高等教育出版社, 2006.
Huang Zhen, Zhao Yongsheng, Zhao Tieshi. Advanced Spatial Mechanism[M]. Beijing:Higher Education Press, 2006(in Chinese).
[11] Dai S, Huang Z, Lipkin H. Mobility of overconstrained parallel mechanisms[J]. Journal of Mechanical Design, 2006, 128(1):220-229.
[12] 刘延斌, 张书涛, 韩建海.一种新型4-RPTR并联机构及运动学分析[J]. 中国机械工程, 2010, 21(23):2812-2815.
Liu Yanbin, Zhang Shutao, Han Jianhai. Structure and kinematics analysis of a novel 4-RPTR parallel mechanism[J]. China Mechanical Engineering, 2010, 21(23):2812-2815(in Chinese).
[13] Huang Tian, Liu Haitao, Song Yimin, et al. Parallel Mechanism Having Three-Dimensional Translations and
One-Dimensional Rotation:US, 8839690 B2[P]. 2014-09-03.
[14] 沈惠平, 杨廷力, 马履中. 一类新型六自由度并联机构及其结构分析[J]. 中国机械工程, 2008, 19(6):721-724.
Shen Huiping, Yang Tingli, Ma Lüzhong. A class of 6-DOF parallel kinematic structures and structure analysis [J]. China Mechanical Engineering, 2008, 19(6):721-724. (in Chinese).
[15] 赵杰, 王卫忠, 蔡鹤皋.可重构机器人封闭形式的运动学逆解运算[J]. 机械工程学报, 2006, 42(8):211-214.
Zhao Jie, Wang Weizhong, Cai Hegao. Generation of closed-form inverse kinematics for reconfigurable robots[J]. Chinese Journal of Mechanical Engineering, 2006, 42(8):211-214(in Chinese).
[16] 李宁. 移动机械手末端位姿误差分析及补偿技术[D]. 天津:河北工业大学机械学院, 2009.
Li Ning. Analysis and Compensation Technology of Pose Error for the End-Effector of Mobile Manipulator[D]. Tianjin:School of Mechanical Engineering, Hebei University of Technology, 2009(in Chinese).
[17] Raghava M. The stewart platform of genneral geometry has 40 configurations[J]. Mechanical Design, 1993, 115(6):277-282.
[18] Raghava M. The Stewart platform of genneral geometry has 40 configurations[J]. Journal of Mechanical Design, 1993, 115(6):277-282.

备注/Memo

备注/Memo:
收稿日期: 2016-03-08; 修回日期: 2016-04-20.
作者简介: 谢志江(1962—), 男, 教授, xie@cqu.edu.cn.
通讯作者: 郭宗环, zonghuan208@163.com.
网络出版时间: 2016-05-04.网络出版地址: http://www.cnki.net/kcms/detail/12.1127.N.20160504.0906.002.html.
基金项目: 国家自然科学基金重点资助项目(U1530138).
Supported by the Key Program of National Natural Science Foundation of China(No. U1530138).
更新日期/Last Update: 2017-06-10