|本期目录/Table of Contents|

[1]马军旭,周长兴,张俊,等.环境温度对数控机床直线运动轴位置偏差的影响[J].天津大学学报(自然科学版),2017,(06):579-585.[doi:10.11784/tdxbz201605056]
 Ma Junxu,Zhou Changxing,Zhang Jun,et al.Influence of Ambient Temperature on Positional Deviation of Linear Axis of CNC Machine Tool[J].Journal of Tianjin University,2017,(06):579-585.[doi:10.11784/tdxbz201605056]
点击复制

环境温度对数控机床直线运动轴位置偏差的影响()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年06
页码:
579-585
栏目:
机械工程
出版日期:
2017-06-19

文章信息/Info

Title:
Influence of Ambient Temperature on Positional Deviation of Linear Axis of CNC Machine Tool
文章编号:
0493-2137(2017)06-0579-07
作者:
马军旭 周长兴 张俊 赵万华
西安交通大学机械工程学院,西安 710049
Author(s):
Ma Junxu Zhou Changxing Zhang Jun Zhao Wanhua
School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
位置偏差预测模型 环境温度 直线运动轴 半闭环 全闭环
Keywords:
prediction model for positional deviation ambient temperature linear axis semi-closed loop closed loop
分类号:
TH17
DOI:
10.11784/tdxbz201605056
文献标志码:
A
摘要:
机床使用时环境温度的变化, 造成补偿后的定位精度变差.“固定-支撑”的丝杠安装方式下热误差呈线性规律, 据此建立了半闭环直线运动轴位置偏差随环境温度变化的预测模型.测试了半闭环控制运动轴在最高、最低两种环境温度下的位置偏差, 拟合得到热误差随环境温度变化的规律.利用位置偏差预测结果, 对螺距误差进一步补偿.结果表明:对于半闭环控制的滚珠丝杠进给系统, 当环境温升8 ℃时, 位置偏差最大值由8 μm增大到72 μm, 补偿后降为9.9 μm, 降低了96.87% ; 对于全闭环控制的滚珠丝杠进给系统, 当环境温升8 ℃时, 位置偏差由2.5 μm增大到17.7 μm.根据本文所建立的模型进行补偿, 可以提高定位精度的热稳定性, 并且当环境温升大于6 ℃时, 利用温度补偿的半闭环控制下定位精度大于全闭环控制下的定位精度.
Abstract:
When the machine tool is in work,ambient temperature change will cause the positioning accuracy after compensation to get worse. In this paper,a semi-closed loop linear motion axis position deviation prediction model was proposed according to thermal error linear law under ball screw fixing-support installation. Under semi-closed loop control system,position deviations of the whole stroke in two environments of the highest and lowest temperature were tested. The law of thermal error changing with ambient temperature was obtained by data fitting. By use of the position deviation prediction results,the pitch error was further compensated for. The results show that for semi-closed loop CNC machine tool,when the ambient temperature rises by 8 ℃,the maximum of position deviation increases from 8 μm to 72 μm,while it decreases to 9.9 μm after compensation and the decreasing rate is 96.87% ; for closed-loop CNC machine tool,when the ambient temperature rises by 8 ℃,the maximum of position deviation increases from 2.5 μm to 17.7 μm. When the proposed model is adopted to compensate for pitch error,the thermal stability of positioning accuracy can be improved,and when the ambient temperature rise is higher than 6 ℃,the positioning accuracy with pitch error compensation under semi-closed loop control system is higher than that under closed loop control system.

参考文献/References:

[1] Yang S H, Kim K H, Park Y K, et al. Error analysis and compensation for the volumetric errors of a vertical machining centre using a hemispherical helix ball bar test [J]. The International Journal of Advanced Manufacturing Technology, 2004, 23(7/8):495-500.
[2] Khan A W, Chen W. A methodology for systematic geometric error compensation in five-axis machine tools [J]. The International Journal of Advanced Manufacturing Technology, 2011, 53(5/6/7/8):615-628.
[3] 韩飞飞, 赵继, 张雷, 等. 数控机床几何精度综合解析与试验研究[J]. 机械工程学报, 2012, 48(21):141-148.
Han Feifei, Zhao Ji, Zhang Lei, et al. Synthetical analysis and experimental study of the geometric accuracy of CNC machine tools[J]. Journal of Mechanical Engineering, 2012, 48(21):141-148(in Chinese).
[4] Wu C W, Tang C H, Chang C F, et al. Thermal error compensation method for machine center[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(5):681-689.
[5] Wang Wei, Zhang Yi, Yang Jianguo, et al. Geometric and thermal error compensation for CNC milling machines based on Newton interpolation method[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2012, 227(4):771-778.
[6] 王维, 杨建国, 姚晓栋, 等. 数控机床几何误差与热误差综合建模及其实时补偿[J]. 机械工程学报, 2012, 48(7):165-170, 179.
Wang Wei, Yang Jianguo, Yao Xiaodong, et al. Synthesis modeling and real-time compensation of geometric error and thermal error for CNC machine tools[J]. Journal of Mechanical Engineering, 2012, 48(7):165-170, 179(in Chinese).
[7] 王福吉, 贾振元, 阳江源, 等. 基于动态模糊神经网络的机床时变定位误差补偿[J]. 机械工程学报, 2011, 47(13):175-179.
Wang Fuji, Jia Zhenyuan, Yang Jiangyuan, et al. Time-varying position error compensation of machine tools based on dynamic fuzzy neural networks[J]. Journal of Mechanical Engineering, 2011, 47(13):175-179(in Chinese).
[8] 李自汉, 杨建国, 张毅, 等. 基于自适应分段与动态修正的机床定位误差补偿[J]. 上海交通大学学报, 2014, 48(1):27-32.
Li Zihan, Yang Jianguo, Zhang Yi, et al. Machine tool positioning error compensation based on adaptive segmentation and dynamic modification[J]. Journal of Shanghai Jiao Tong University, 2014, 48(1):27-32(in Chinese).
[9] 李兴达, 李自汉, 杨建国, 等. 数控铣齿机定位误差的热影响分析及其分段建模[J]. 机械设计与制造, 2015(5):92-95.
Li Xingda, Li Zihan, Yang Jianguo, et al. Thermal impact analysis of NC gear milling machine positioning error and its segment modeling[J]. Machinery Design & Manufacture, 2015(5):92-95(in Chinese).
[10] Zhang Hongtao, Yang Jianguo, Zhang Yi, et al. Measurement and compensation for volumetric positioning errors of CNC machine tools considering thermal effect[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(1):275-283.
[11] 张毅, 杨建国, 李自汉, 等. 基于自然指数模型的机床定位误差建模与实时补偿[J]. 组合机床与自动化加工技术, 2013(8):8-11, 15.
Zhang Yi, Yang Jianguo, Li Zihan, et al. Machine tool positioning error modeling and real-time compensation based on natural exponential model[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013(8):8-11, 15(in Chinese).
[12] Kim J J, Jeong Y H, Cho D W. Thermal behavior of a machine tool equipped with linear motors[J]. International Journal of Machine Tools & Manufacture, 2004, 44(7/8):749-758.
[13] Alejandre, Artes M. Thermal non-linear behavior in optical linear encoders[J]. International Journal of Machine Tools & Manufacture, 2006, 46(12/13):1319-1325.
[14] Lopez J, Artes M, Alejandre I. Analysis of optical linear encoders’ errors under vibration at different mounting conditions[J]. Measurement, 2011, 44(8):1367-1380.

相似文献/References:

[1]呂灿仁.工程热力学可用能函数和热力循环的第二定律分析法[J].天津大学学报(自然科学版),1963,(01):107.
[2]王中铮,Sheldon M.Jeter.太阳能系统的模拟和性能比较[J].天津大学学报(自然科学版),1982,(01):75.

备注/Memo

备注/Memo:
收稿日期: 2016-05-12; 修回日期: 2016-06-24.
作者简介: 马军旭(1981—), 男, 博士研究生, mx810606@sohu.com.
通讯作者: 赵万华, wanhuazhao@mail.xjtu.edu.cn.
网络出版时间: 2016-09-06.网络出版地址: http://www.cnki.net/kcms/detail/12.1127.N.20160906.1017.002.html.
基金项目: 国家科技重大专项资助项目(2014ZX04014-021).
Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.,2014ZX04014-021).
更新日期/Last Update: 2017-06-10