|本期目录/Table of Contents|

[1]王世宇,孙文嘉,夏营,等.旋转环状周期结构参激振动分析[J].天津大学学报(自然科学版),2017,(06):572-578.[doi:10.11784/tdxbz201605103]
 Wang Shiyu,Sun Wenjia,Xia Ying,et al.Parametric Vibration of Rotational Ring-Shaped Periodic Structures[J].Journal of Tianjin University,2017,(06):572-578.[doi:10.11784/tdxbz201605103]
点击复制

旋转环状周期结构参激振动分析()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年06
页码:
572-578
栏目:
机械工程
出版日期:
2017-06-19

文章信息/Info

Title:
Parametric Vibration of Rotational Ring-Shaped Periodic Structures
文章编号:
0493-2137(2017)06-0572-07
作者:
王世宇12 孙文嘉1 夏营1 修杰3
1. 天津大学机械工程学院,天津 300354;2. 天津市非线性动力学与控制重点实验室,天津 300354;3. 天津大学电气自动化与信息工程学院,天津 300072
Author(s):
Wang Shiyu12 Sun Wenjia1 Xia Ying1 Xiu Jie3
1. School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
2.Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin 300354, China
3.School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
关键词:
环状周期结构 坐标变换 特征值 不稳定性预测
Keywords:
ring-shaped periodic structure coordinate transformation eigenvalues instability prediction
分类号:
TH113.1
DOI:
10.11784/tdxbz201605103
文献标志码:
A
摘要:
针对旋转环状周期结构的参激振动问题, 在惯性坐标系下采用能量法建立了时变弹性动力学模型.为了获得系统的动力稳定性, 采用坐标变换方法消除了该模型的时变性, 然后根据经典振动理论得到了系统的特征值.根据该特征值分析了模态特性和不稳定性.结果表明:在旋转支撑作用下, 系统的固有频率发生分裂; 对于某些转速, 系统表现出发散或颤振不稳定.此外, 利用Floquét理论计算了系统的不稳定域和动态响应, 并将其与解析预测进行对比.该研究有助于快速分析该类参激系统的动力稳定性, 并获得指导工程实践的解析结果.
Abstract:
This work aims at the parametric vibration of rotational ring-shaped periodic structures. An elastic model of the structure is developed by using energy method in the inertial coordinate,and the eigenvalues are obtained by using general vibration theory after the coordinate transformation. The modal characteristics and the unstable boundaries are identified by the eigenvalues. The results show that natural frequency splitting can occur due to the effect of rotating supports,and there exist divergence and flutter instabilities at certain rotating speed. Besides,the unstable regions and the dynamic response are obtained by using the Floquét theory for the verification on analytical estimations. The research contributes to the optimization of the analysis of dynamic instability for similar structures,and the analytical results are obtained to guide the practice in engineering.

参考文献/References:

[1] 国家自然科学基金委员会工程与材料科学部. 机械工程学科发展战略报告(2011—2020)[M]. 北京:科学出版社, 2010.
Engineering and Material Science Department of NSFC. Mechanical Engineering Discipline Development Strategy Report(2011—2020)[M]. Beijing:Science Press, 2010(in Chinese).
[2] Yu R C, Mote C D. Vibration of circular saws containing slots[J]. European Journal of Wood and Wood Products, 1987, 45(4):155-160.
[3] Wu X H, Parker R G. Vibration of rings on a general elastic foundation[J]. Journal of Sound and Vibration, 2006, 295(1/2):194-213.
[4] Wang S Y, Xiu J, Liu J P, et al. Prediction and suppression of inconsistent natural frequency and mode coupling of a cylindrical ultrasonic stator[J]. Journal of Mechanical Engineering Science, 2010, 224(9):1853-1862.
[5] 王世宇, 陈东亮, 刘建平, 等. 分组对称旋转周期结构固有频率分裂解析分析[J]. 天津大学学报, 2012, 45(5):393-399.
Wang Shiyu, Chen Dongliang, Liu Jianping, et al. Analytical analysis on natural frequency splitting of rotationally periodic structure with grouped features[J]. Journal of Tianjin University, 2012, 45(5):393-399(in Chinese).
[6] Canchi S V, Parker R G. Parametric instability of a circular ring subjected to moving springs[J]. Journal of Sound and Vibration, 2006, 293(1/2):360-379.
[7] Canchi S V, Parker R G. Parametric instability of a rotating circular ring with moving, time-varying springs [J]. ASME Journal of Vibration and Acoustics, 2006, 128(2):231-243.
[8] Zhao Z F, Wang S Y. Parametric instability induced by traveling magnetic load within permanent magnet motors [J]. Nonlinear Dynamics, 2015, 80(1):827-843.
[9] Wang S Y, Sun W J, Wang Y Y. Instantaneous mode contamination and parametric combination instability of spinning cyclic symmetric ring structures with expanding application to planetary gear ring[J]. Journal of Sound and Vibration, 2016, 375:366-385.
[10] Meng P. Parametric Instability Investigation and Stability Based Design for Transmission Systems Containing Face-Gear Drives[D]. Knoxville:University of Tennessee, 2012.
[11] Huang S C, Soedel W. Effects of Coriolis acceleration on the free and forced in-plane vibration of rotating rings on elastic foundation[J]. Journal of Sound and Vibration, 1987, 115(2):253-274.
[12] 胡海岩. 应用非线性动力学[M]. 北京:航空工业出版社, 2000.
Hu Haiyan. Applied Nonlinear Dynamics[M]. Beijing:Aviation Industry Press, 2000(in Chinese).
[13] Pandiyan R. Analysis and Control of Nonlinear Dynamic Systems with Periodically Varying Parameters[D]. Auburn:Auburn University, 1994.
[14] 王海期. 非线性振动[M]. 北京:高等教育出版社, 1992.
Wang Haiqi. Nonlinear Vibration[M]. Beijing:China Higher Education Press, 1992(in Chinese).
[15] 老大中. 变分法基础[M]. 北京:国防工业出版社, 2004.
Lao Dazhong. The Basis of Calculus of Variations[M]. Beijing:National Defense Industry Press, 2004(in Chinese).
[16] Cooley C G, Parker R G. Mechanical stability of high-speed planetary gears[J]. International Journal of Mechanical Sciences, 2013, 69:59-71.
[17] Farkas M. Periodic Motions[M]. New York:Springer Verlag, 1994.

相似文献/References:

[1]王向军,郑义忠,周鑫玲.多坐标系统参数传递法测量二维几何参数[J].天津大学学报(自然科学版),1994,(03):0.
[2]姜常珍.弧形均匀线电荷三维静电场解析计算[J].天津大学学报(自然科学版),1991,(S1):0.
[3]李一民.三维定常与非定常跨音速绕流流场的数值计算方法[J].天津大学学报(自然科学版),1984,(S2):16.

备注/Memo

备注/Memo:
收稿日期: 2016-05-29; 修回日期: 2016-09-18.
作者简介: 王世宇(1974—), 男, 博士, 副教授.
通讯作者: 王世宇, wangshiyu@tju.edu.cn.
网络出版时间: 2016-10-19.网络出版地址: http://www.cnki.net/kcms/detail/12.1127.N.20161019.1508.004.html.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2013CB035403); 国家高技术研究发展计划(863计划)资助项目(2012AA04); 国家自然科学基金资助项目(51175370); 天津市应用基础与前沿技术研究计划重点资助项目(13JCZDJC34300); 天津市应用基础与前沿技术研究计划资助项目(14JCYBJC18800).
Supported by the National Basic Research Program of China(No.,2013CB035403), the National High Technology Research and Development Program of China(No.,2012AA04), the National Natural Science Foundation of China(No.,51175370), the Tianjin Key Research Program of Application Foundation and Advanced Technology(No.,13JCZDJC34300)and the Tianjin Research Program of Application Foundation and Advanced Technology(No.,14JCYBJC18800).
更新日期/Last Update: 2017-06-10