|本期目录/Table of Contents|

[1]陈乃金,冯志勇.不跨层行操作并行RCA互连时延性能评估[J].天津大学学报(自然科学版),2017,(04):429-436.[doi:10.11784/tdxbz201601001]
 Chen Naijin,Feng Zhiyong.Interconnect Delay Performance Evaluation for Non-Crossing Level and Row Operands Parallel RCA[J].Journal of Tianjin University,2017,(04):429-436.[doi:10.11784/tdxbz201601001]
点击复制

不跨层行操作并行RCA互连时延性能评估()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年04
页码:
429-436
栏目:
计算机科学与技术
出版日期:
2017-04-30

文章信息/Info

Title:
Interconnect Delay Performance Evaluation for Non-Crossing Level and Row Operands Parallel RCA
作者:
陈乃金12 冯志勇1
1. 天津大学计算机科学与技术学院,天津 300072;2. 安徽工程大学计算机与信息学院,芜湖 241000
Author(s):
Chen Naijin12 Feng Zhiyong1
1.School of Computer Science and Technology, Tianjin University, Tianjin 300072, China
2.College of Computer and Information Science, Anhui Polytechnic University, Wuhu 241000, China
关键词:
互连模式 粗粒度可重构体系结构 点到点互连 路由传输互连 行列总线互连
Keywords:
interconnect mode coarse grained reconfigurable architecture point to point interconnect router transmission interconnect row column bus interconnect
分类号:
TP302
DOI:
10.11784/tdxbz201601001
文献标志码:
A
摘要:
针对三类行并行重构单元阵列互连时延性能评估问题, 提出了一种通过节点映射和运行机制来评测互连时延的方法, 基于前驱回溯不加旁节点不跨层时域映射算法, 对点到点、路由传输、行列总线等互连RCA进行了时延分析和计算.实验结果表明, 与路由传输和行列总线互连相比, 点到点互连在最大不跨层互连、不跨层累加互连、考虑互连执行总时延等方面均是最小的, 从而表明了点到点重构单元阵列的互连时延优于路由器传输和行列总线互连.
Abstract:
In order to assess three types of row parallel recon?gurable cell array(RCA)interconnect delay performance,this paper presented a method for evaluating interconnect delay by means of node mapping and operation running mechanism. Based on preorder traversing backtracking no adding-bypass-node(PTBNA)non-crossing level temporal mapping algorithm,this paper analyzed and computed RCA interconnect delay of point to point(PP),router transmission(RT),and row column bus(RCB). Compared with RT and RCB,PP can get the least in maximum non-crossing level interconnect delay,non-crossing level accumulation interconnect delay and considering interconnect execution total delay. Thus PP-RCA interconnect delay is better than that of RT and RCB.

参考文献/References:

[1] Kim Y, Lee J, Mai T, et al. Improving performance of nested loops on reconfigurable array processors [J]. ACM Transactions on Architecture and Code Optimization, 2012, 8(4):1-32.
[2] Zhao X, Erdogan A T, Arslan T. High-efficiency customized coarse-grained dynamically reconfigurable architecture for JPEG2000[J]. IEEE Transactions on Very Large Scale Integration Systems, 2013, 21(12):2343-2348.
[3] Cardoso J M P, Diniz C D, Weinhardt M. Compiling for reconfigurable computing:A survey [J]. ACM Computing Surveys, 2010, 42(4):1301-1365.
[4] Singh H, Lee M H, Lu G M, et al. MorphoSys:An integrated reconfigureable system for data parallel and computation intensive applications[J]. IEEE Transactions
on Computers, 2000, 49(5):465-481.
[5] Mei B, Vernalde S, Verkest D, et al. ADRES:An architecture with tightly coupled VLIW processor and coarse-grained reconfigurable matrix [C]// Proceedings of 13th International Conference on Field Programmable Logic and Application. Lisbon, Portugal, 2003:61-70.
[6] 魏少军, 刘雷波, 尹首一. 可重构计算处理器技术[J]. 中国科学:信息科学, 2012, 42(12):1559-1576.
Wei Shaojun, Liu Leibo, Yin Shouyi. Key techniques of reconfigurable computing processor[J]. Scientia Sinica:Informationis, 2012, 42(12):1559-1576 (in Chinese).
[7] 窦勇, 邬贵明, 徐进辉, 等. 支持循环自流水的粗粒度可重构阵列体系结构[J]. 中国科学:信息科学, 2008, 38(4):579-591.
Dou Yong, Wu Guiming, Xu Jinhui, et al. A coarse-grained reconfigurable computing architecture with loop self-pipelining[J]. Scientia Sinica:Informationis, 2008, 38(4):579-591(in Chinese).
[8] Miyamori T, Olukotun K, Budiu M, et al. REMARC:Reconfigurable multimedia array coproces-sor[J]. IEICE Transactions on Information and Systems, 1999, E82-D(2):389-397.
[9] Berekovic M, Kanstein A, Mei B, et al. Mapping of nomadic multimedia applications on the ADRES reconfigurable array processor[J]. Microprocessors and Microsystems, 2009, 33(4):290-294.
[10] Janakiraman N, Nirmalkumar P, Akram S M. Coarse grained ADRES based MIMO-OFDM transceiver with new radix-25 pipeline FFT/IFFT processor[J]. Circuits, Systems, and Signal Processing, 2015, 34(3):851-873.
[11] 陈乃金, 冯志勇, 江建慧. 用于二维RCA跨层数据传输的旁节点无冗余添加算法[J]. 通信学报, 2015, 36(4):1-17.
Chen Naijin, Feng Zhiyong, Jiang Jianhui. Bypass node non-redundant adding algorithm for crossing-level data transmission in two-dimension reconfigurable cell array[J]. Journal on Communications, 2015, 36(4):1-17(in Chinese).
[12] 王大伟, 窦勇, 李思昆. 核心循环到粗粒度可重构体系结构的流水化映射[J]. 计算机学报, 2009, 32(6):1089-1099.
Wang Dawei, Dou Yong, Li Sikun. Loop kernel pipelining mapping onto coarse-grained reconfigurable architectures[J]. Chinese Journal of Computers, 2009, 32(6):1089-1099(in Chinese).
[13] 孙康. 可重构计算相关技术研究[D]. 杭州:浙江大学计算机科学与技术学院, 2007.
Sun Kang. Research on Reconfigurable Computing Technologies[D]. Hangzhou:College of Computer Science and Technology, Zhejiang University, 2007(in Chinese).

备注/Memo

备注/Memo:
收稿日期: 2016-01-01; 修回日期: 2016-04-13.
作者简介: 陈乃金(1972—), 男, 副教授, 86naijinchen@tongji.edu.cn.
通讯作者: 冯志勇, zyfeng@tju.edu.cn.
基金项目: 国家高技术研究发展计划(863计划)资助项目(2013AA013204); 安徽省自然科学基金资助项目(1408085MF124); 安徽省高校自然科学研究基金重点资助项目(KJ2015A003); 安徽省高校优秀中青年骨干人才国内外访学研修重点项目(gxfxZD2016102); 安徽工程大学国家自然科学预研基金资助项目.
Supported by the National High Technology Research and Development Program of China(No. 2013AA013204), the Natural Science Foundation of Anhui Province(No. 1408085MF124), the Key Program of University Natural Science Research Foundation of Anhui Province(No. KJ2015A003), the Key Program of University Outstanding Young and Middle Aged Backbone Talent Domestic and Foreign Visiting Scholar Research and Study of Anhui Province(No. gxfxZD2016102) and the National Natural Science Pre-Research Foundation of China of Anhui Polytechnic University.
更新日期/Last Update: 2017-04-10