|本期目录/Table of Contents|

 Shu Gequn,Huo Yongzhan,Tian Hua,et al.A Three-Level Evaluation Method for Internal Combustion Engine Waste Heat ORC Recovery Systems[J].Journal of Tianjin University,2017,(04):411-420.[doi:10.11784/tdxbz201605004]





A Three-Level Evaluation Method for Internal Combustion Engine Waste Heat ORC Recovery Systems
舒歌群 霍永占 田华 于国鹏 赵明如
天津大学内燃机燃烧学国家重点实验室,天津 300072
Shu Gequn Huo Yongzhan Tian Hua Yu Guopeng Zhao Mingru
State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
内燃机余热 有机朗肯循环 多因素评价指标 三层次评价方法 决策优选
internal combustion engine waste heat organic Rankine cycle(ORC) multifactor evaluation index three-level evaluation method decision and optimal selection
针对内燃机余热回收ORC系统评价优选的不完善性, 在综合考虑安全环保可靠性、热力学性能、技术经济性及节能减排效益这三层级属性因素基础上, 提出了一种结合多级非结构模糊决策的三层次评价方法:评价模型建立、系统优化和评价决策.根据提出的方法, 建立了用于某柴油机排气余热回收的简单循环和回热循环系统模型, 对这两系统分别采用7种工质的14个方案进行了优化与评价决策.结果表明:回热循环较简单循环系统有较优异的综合性能; 考虑不同层级因素时方案间的优劣排序会产生变化.验证了此评价优选方法的可行性, 可拓展应用于内燃机多余热源回收采用不同结构、循环方式和工质的ORC系统优选.
Aiming at the imperfection of internal combustion engine(ICE)waste heat organic Rankine cycle(ORC) recovery system in terms of evaluation and optimal selection,three-level attribute factors including safety environmental protection and reliability,thermodynamic properties,technology economy,energy conservation and emissions reduction benefits were under comprehensive consideration. This paper presents a three-level evaluation method combined with multi-level non-structural fuzzy decision,including evaluation model building,system optimization,evaluation and decision making. According to the proposed method,basic ORC and regenerative ORC system models for the exhaust waste heat recovery of a diesel engine were established,and 14 schemes of the two systems with 7 working fluids were optimized and evaluation decisions were made. The results show that regenerative ORCs have better comprehensive performance than basic ORCs. The performance ranking order of the schemes changes when factors of different level are considered. Results have verified the feasibility of this method,which can be extended to the study and selection of ORC systems with different structures,cycle modes and working fluids for the multiple heat source recovery of engines.


[1] Dolz V, Novella R, García A, et al. HD diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system(Part 1):Study and analysis of the waste heat energy[J]. Applied Thermal Engineering, 2012, 36(1):269-278.
[2] 舒歌群, 许晓菲, 田华, 等. 柴油机多品位余热回收低损跨临界联合循环模拟[J]. 天津大学学报:自然科学与工程技术版, 2014, 47(1):1-8.
Shu Gequn, Xu Xiaofei, Tian Hua, et al. Simulation of a transcritical combined organic Rankine cycle with low exergy destruction used for multiple grades waste heat recovery of diesel engine[J]. Journal of Tianjin University:Science and Technology, 2014, 47(1):1-8(in Chinese).
[3] 魏名山, 方金莉, 王瑞君, 等. 柴油机工况对中温有机朗肯循环性能影响的模拟[J]. 内燃机学报, 2011, 29(3):248-252.
Wei Mingshan, Fang Jinli, Wang Ruijun, et al. Simulation of diesel engine conditions on a medium temperature ORC system[J]. Transactions of CSICE, 2011, 29(3):248-252(in Chinese).
[4] Yang Fubin, Zhang Hongguang, Bei Chen, et al. Parametric optimization and performance analysis of ORC(organic Rankine cycle)for diesel engine waste heat recovery with a fin-and-tube evaporator[J]. Energy, 2015, 91:128-141.
[5] Wang E H, Zhang H G, Zhao Y, et al. Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine[J]. Energy, 2012, 43(1):385-395.
[6] Roy J P, Mishra M K, Misra A. Performance analysis of an organic Rankine cycle with superheating under different heat source temperature conditions[J]. Applied Energy, 2011, 88(9):2995-3004.
[7] Hountalas D T, Mavropoulos G C, Katsanos C, et al. Improvement of bottoming cycle efficiency and heat rejection for HD truck applications by utilization of EGR and CAC heat[J]. Energy Conversion and Management, 2012, 53(1):19-32.
[8] Gewald D, Karellas S, Schuster A, et al. Integrated system approach for increase of engine combined cycle efficiency[J]. Energy Conversion and Management, 2012, 60(60):36-44.
[9] Glover S, Douglas R, de Rosa M, et al. Simulation of a multiple heat source supercritical ORC(organic Rankine cycle)for vehicle waste heat recovery[J]. Energy, 2015, 93(2):1568-1580.
[10] Shu Gequn, Yu Guopeng, Tian Hua, et al. A multi-approach evaluation system(MA-ES)of organic Rankine cycles(ORC)used in waste heat utilization[J]. Applied Energy, 2014, 132(11):325-338.
[11] Tian Hua, Shu Gequn, Wei Haiqiao, et al. Fluids and parameters optimization for the organic Rankine cycles(ORCs)used in exhaust heat recovery of internal combustion engine(ICE)[J]. Energy, 2012, 47(1):125-136.
[12] 张新铭, 余柄宪, 王春. 考虑环境影响的ORC系统综合评价指标及性能分析[J]. 化工学报, 2014, 65(12):4978-4984.
Zhang Xinming, Yu Bingxian, Wang Chun. Comprehensive evaluation index and performance analysis of organic Rankine cycle system considering environment impact[J]. CIESC Journal, 2014, 65(12):4978-4984(in Chinese).
[13] He Chao, Liu Chao, Zhou Mengtong, et al. A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources[J]. Energy, 2014, 68(1):283-291.
[14] Fergani Z, Touil D, Morosuk T. Multi-criteria exergy based optimization of an organic Rankine cycle for waste heat recovery in the cement industry[J]. Energy Conversion and Management, 2016, 122(5):81-90.
[15] Mamaghani Alireza Haghighat, Najafi Behzad, Shirazi Ali, et al. 4 E analysis and multi-objective optimization of an integrated MCFC(molten carbonate fuel cell)and ORC(organic Rankine cycle)system[J]. Energy, 2015, 82:650-663.
[16] 许俊俊, 罗向龙, 王永真, 等. ORC工质选择的多级非结构性模糊决策分析[J]. 化工学报, 2015, 66(3):1051-1058.
Xu Junjun, Luo Xianglong, Wang Yongzhen, et al. Optimum selection of ORC working fluid using multi-level fuzzy optimization and non-structural fuzzy decision [J]. CIESC Journal, 2015, 66(3):1051-1058(in Chinese).
[17] Zhou Guoyan, Wu En, Tu Shantung. Optimum selection of compact heat exchangers using non-structural fuzzy decision method[J]. Applied Energy, 2014, 113(1):1801-1809.
[18] Kandylas I P, Stamatelos A M. Engine exhaust system design based on heat transfer computation[J]. Energy Conversion and Management, 1999, 40(10):1057-1072.
[19] Martin H. A theoretical approach to predict the performance of chevron-type plate heat exchangers[J]. Chem Eng Process, 1996, 34(4):301-310.
[20] Hsieh Y Y, Lie Y M, Lin T F. Condensation heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger[C]//Third International Symposium on Two-Phase Flow Modelling and Experimentation. Italy, 2004:1.
[21] Yu Guopeng, Shu Gequn, Tian Hua, et al. Multi-approach evaluations of a cascade-organic Rankine cycle(C-ORC)system driven by diesel engine waste heat:Part B-techno-economic evaluations[J]. Energy Conversion and Management, 2016, 108:596-608.
[22] De la Fuente S S, Roberge D, Greig A. Safety and CO2 emissions:Implications of using organic fluids in a ship’s waste heat recovery system[J]. Marine Policy, 2016:DOI:10. 1016/j. marpol. 2016. 02. 008.


收稿日期: 2016-05-04; 修回日期: 2016-06-28.
作者简介: 舒歌群(1964—), 男, 教授.
通讯作者: 田华, thtju@tju.edu.cn.
网络出版时间: 2016-09-14.网络出版地址: http://www.cnki.net/kcms/detail/12.1127.N.20160914.1535.002.html.
基金项目: 国家自然科学基金资助项目(51206117).
Supported by the National Natural Science Foundation of China(No. 51206117).
更新日期/Last Update: 2017-04-10