|本期目录/Table of Contents|

[1]庞彦伟,周俊,邓君坪,等.基于图像分解与字典分类的单幅图像去雨算法[J].天津大学学报(自然科学版),2017,(04):391-398.[doi:10.11784/tdxbz201604079]
 Pang Yanwei,Zhou Jun,Deng Junping,et al.Single-Image Rain Removal Algorithm Based on Image Decomposition and Dictionary Classification[J].Journal of Tianjin University,2017,(04):391-398.[doi:10.11784/tdxbz201604079]
点击复制

基于图像分解与字典分类的单幅图像去雨算法()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年04
页码:
391-398
栏目:
电气自动化与信息工程
出版日期:
2017-04-30

文章信息/Info

Title:
Single-Image Rain Removal Algorithm Based on Image Decomposition and Dictionary Classification
作者:
庞彦伟 周俊 邓君坪 何宇清
天津大学电气自动化与信息工程学院,天津 300072
Author(s):
Pang Yanwei Zhou Jun Deng Junping He Yuqing
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
关键词:
单幅图像去雨 纹理恢复 稀疏表示 字典分类
Keywords:
single-image rain removal texture recovery sparse representation dictionary classification
分类号:
TP391.4
DOI:
10.11784/tdxbz201604079
文献标志码:
A
摘要:
针对单幅图像下, 基于稀疏表示的去雨算法存在残差较大而导致图像恢复效果不理想的问题, 提出了一种优化图像高频部分几何分量的去雨方法.首先采用平滑滤波做图像分解, 得到雨图像的高频部分; 然后结合稀疏表示与近邻传播算法分离出图像高频部分的雨分量, 用图像的高频部分减去雨分量并做平滑处理, 以此作为几何分量; 此外, 对稀疏表示过程得到的字典进行再分类, 完善雨分量与非雨分量的区分, 最后完成图像恢复.实验结果表明, 该方法能有效利用图像的几何信息来解决纹理恢复误差较大的问题, 实现更精确的纹理恢复和雨分量去除.
Abstract:
To solve the problem of the unsatisfactory effect in single-image rain removal due to the large residual in sparse representation,an improved algorithm based on optimizing geometric components in high frequency part is proposed. First,smoothing filter is used to decompose image and obtain high-frequency part. Then,the rain component in high-frequency part is obtained via sparse representation and affinity propagation. The geometric component is acquired by subtracting the rain component from the high-frequency part,followed by a smoothing process. In addition,the dictionary got from sparse representation is re-classified to improve the classification between rain and non-rain. Finally,the restoration of non-rain image is completed. Experimental results show that the proposed method can effectively utilize the geometric information in the image to reduce the error in texture restoration and achieve high accuracy in texture recovery and rain removal.

参考文献/References:

[1] Baya H, Essa A, Tuytelaarsb T, et al. Speeded-up robust features[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359.
[2] Roser M, Geiger A. Video-based raindrop detection for improved image registration [C]// Proceedings of IEEE International Conference on Computer Vision Workshops. Kyoto, Japan, 2009:570-577.
[3] Narasimhan S G, Nayar S K. Removing weather effects from monochrome images [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Kauai, USA, 2001:186-193.
[4] Sand P, Teller S. Particle video:Long-range motion estimation using point trajectories[J]. International Journal of Computer Vision, 2008, 80(1):72-91.
[5] Lowe D G. Distinctive image features from scale-invariant key-points[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
[6] Duncombe J U. Infrared navigation—Part I:An assessment of feasibility[J]. IEEE Transactions on Electron Devices, 1959, 11(1):34-39.
[7] Olshausen B A. Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J]. Nature, 1996, 381(6583):607-609.
[8] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415.
[9] Mairal J, Bach F, Ponce J, et al. Online learning for matrix factorization and sparse coding[J]. The Journal of Machine Learning Research, 2010, 11(1):19-60.
[10] Kang L W, Lin C W, Fu Y H. Automatic single-image-based rain streaks removal via image decomposition[J]. IEEE Transactions on Image Processing, 2012, 21(4):1742-1755.
[11] Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C]// Proceedings of IEEE International Conference on Computer Vision. Bombay, India, 1998:839-846.
[12] Zhang M, Gunturk B K. Multiresolution bilateral filtering for image denoising[J]. IEEE Transactions on Image Processing, 2008, 17(12):2324-2333.
[13] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]// Proceedings of IEEE International
Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005:886-893.
[14] Haung D A, Kang L W, Wang Y C F, et al. Self-learning based image decomposition with applications to single image denoising[J]. IEEE Transactions on Multimedia, 2014, 16(1):83-93.
[15] Luo Y, Xu Y, Ji H. Removing rain from a single Image via discriminative sparse coding[C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015:3397-3405.
[16] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3D transform-domain collaborative filtering [J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095.
[17] Bobin J, Starck J L, Fadili J M, et al. Morphological component analysis:An adaptive thresholding strategy [J]. IEEE Transactions on Image Processing, 2007, 16(11):2675-2681.
[18] Aharon M, Elad M, Bruckstein A M. The K-SVD:An algorithm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322.
[19] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:From error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
[20] Zhang L, Zhang L, Mou X, et al. FSIM:A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8):2378-2386.
[21] Zhang L, Zhang L, Mou X, et al. A comprehensive evaluation of full reference image quality assessment algorithms[C]// Proceedings of IEEE International Conference on Image Processing. Orlando, USA, 2012:1477-1480.

备注/Memo

备注/Memo:
收稿日期: 2016-04-29; 修回日期: 2016-08-04.
作者简介: 庞彦伟(1976—), 男, 博士, 教授.
通讯作者: 庞彦伟, pyw@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(61472274); 国家自然科学基金重点项目(61632081).
Supported by the National Natural Science Foundation of China(No. 61472274), the Key Program of the National Natural Science Foundation of China(No. 61632081).
更新日期/Last Update: 2017-04-10