|本期目录/Table of Contents|

[1]邱长林,王菁,闫澍旺,等.碎石保护结构防拖锚效果的DEM分析[J].天津大学学报(自然科学版),2017,(04):367-376.[doi:10.11784/tdxbz201510015]
 Qiu Changlin,Wang Jing,Yan Shuwang,et al.DEM Analysis of Protection Effect of Rock Armor Berm Against Drag Anchors[J].Journal of Tianjin University,2017,(04):367-376.[doi:10.11784/tdxbz201510015]
点击复制

碎石保护结构防拖锚效果的DEM分析()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年04
页码:
367-376
栏目:
建筑工程
出版日期:
2017-04-30

文章信息/Info

Title:
DEM Analysis of Protection Effect of Rock Armor Berm Against Drag Anchors
作者:
邱长林 王菁 闫澍旺 林澍 纪玉诚
天津大学建筑工程学院,天津 300072
Author(s):
Qiu Changlin Wang Jing Yan Shuwang Lin Shu Ji Yucheng
School of Civil Engineering, Tianjin University, Tianjin 300072, China
关键词:
碎石保护结构 离散元 碎石粒径 拖锚速度 初始位置
Keywords:
rock armor berm discrete element grain size drag speed initial position
分类号:
TU43
DOI:
10.11784/tdxbz201510015
文献标志码:
A
摘要:
在近海港口停泊地区, 海底管线通常埋置在碎石保护结构中, 以免遭受来自拖锚或抛锚的撞击而损伤.为评价走锚时碎石保护结构对海底管线的防护效果, 基于碎石结构的离散特点, 采用离散单元法(DEM)模拟了拖锚从细砂到碎石保护结构的运动过程, 并与室内模型试验结果对比, 验证了该方法的可行性.在此基础上, 利用离散单元法研究了碎石保护结构的抗锚害机理, 分析了不同碎石粒径、不同拖锚速度及不同初始拖锚位置时锚拖曳力、锚爪转角及锚爪爪尖轨迹等的变化规律.分析结果表明, 碎石粒径和拖锚速度越大, 锚爪爪尖在碎石层中抬升的高度越高, 越有利于保护海底管线; 从不同初始位置开始的拖锚运动, 达到稳定运动状态时的拖曳力、锚爪爪尖轨迹及锚爪转角基本相同.该结果可以为海底管线碎石保护结构的设计提供依据.
Abstract:
Submarine pipelines are usually buried in rock armor berm to avoid being impacted by dropping or dragging anchors within the port areas. To investigate the performance of rock armor berm,a numerical model in discrete element method(DEM)is built to simulate the process of dragging hall anchor from fine sand to rock armor berms based on the discrete property of gravel. The feasibility of the model is verified by comparing the results with those of the model test. The model is used to simulate the movements of dragging anchor through different grain sizes of gravel materials,at different dragging speeds and with different initial positions. Dragging load,rotation angle of fluke and the trajectory of fluke tip are measured during the motion of anchor. Calculated results show that the larger the size of gravel materials is and the higher the dragging speed is,the farther the anchor will be away from the pipelines,which is helpful to protect pipelines; the dragging load,the rotation angle of fluke and the trajectory of fluke tip are almost the same when the anchor moves steadily forward from different initial positions. The results can be used in the design of rock armor berm in engineering.

参考文献/References:

[1] 魏秋晨, 刘润, 闫澍旺, 等. 围海造陆对已埋设海底管线安全性的影响[J]. 天津大学学报, 2010, 43(4):344-348.
Wei Qiuchen, Liu Run, Yan Shuwang, et al. Effect of reclamation on existing submarine pipeline[J]. Journal of Tianjin University, 2010, 43(4):344-348(in Chinese).
[2] DNV-OS-F10lSubmarine Pipeline Systems[S]. Det Norske Veritas, 2007.
[3] Gaudin C, Landon M M, Pedersen V, et al. Validation of rock berm cover design for offshore LNG pipeline in Hong Kong[C]∥Proceedings of the 19th International Offshore and Polar Engineering Conference. Osaka, Japan, 2009:546-553.
[4] 王懿, 贾旭, 黄俊, 等. 基于CEL 的船舶抛锚入泥深度分析[J]. 石油机械, 2014, 42(12):44-47.
Wang Yi, Jia Xu, Huang Jun, et al. Analysis of penetration depth of dropped anchor based on CEL[J]. China Petroleum Machinery, 2014, 42(12):44-47(in Chinese).
[5] 周健, 贾敏才. 土工细观模型试验及数值模拟[M]. 北京:科学出版社, 2008.
Zhou Jian, Jia Mincai. Mesomechanical Model Test and Numerical Simulation in Geotechnical Engineering[M]. Beijing:Science Press, 2008(in Chinese).
[6] 郑刚, 焦莹, 柴浩, 等. 扩径桩抗压抗拔性能的颗粒流数值模拟[J]. 天津大学学报, 2008, 41(1):78-84.
Zheng Gang, Jiao Ying, Chai Hao, et al. Numerical simulation of particle flow code for pile with expanded diameter under compressive load and uplifting load[J]. Journal of Tianjin University, 2008, 41(1):78-84(in Chinese).
[7] 李黎, 程志远, 王腾飞, 等. 海底电缆抛石保护层抗锚害能力的数值仿真研究[J]. 土木工程与管理学报, 2013, 30(2):1-5.
Li Li, Cheng Zhiyuan, Wang Tengfei, et al. Numerical simulation study on the degree of submarine cable protection by rockfill against anchor[J]. Journal of Civil Engineering and Management, 2013, 30(2):1-5(in Chinese).
[8] Itasca Consulting Group. PFC3D User’s Manual(Version 3.1)[M]. Minneapolis:Itasca Consulting Group, Inc, 2004.
[9] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8):1329-1364.
[10] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1):47-65.
[11] 周健, 池永. 砂土力学性质的细观模拟[J]. 岩土力学, 2003, 24(6):901-906.
Zhou Jian, Chi Yong. Mesomechanical simulation of sand mechanical properties[J]. Rock and Soil Mechanics, 2003, 24(6):901-906(in Chinese).
[12] 史旦达, 周健, 刘文白, 等. 砂土单调剪切特性的非圆颗粒模拟[J]. 岩土工程学报, 2008, 30(9):1361-1366.
Shi Danda, Zhou Jian, Liu Wenbai, et al. Numerical simulation for behaviors of sand with non-circular particles under monotonic shear loading[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9):1361-1366(in Chinese).
[13] GB/T 546—1997霍尔锚[S]. 北京:中国标准出版社, 1998.
GB/T 546—1997 Hall Anchor[S]. Beijing:China Standards Press, 1998(in Chinese).

备注/Memo

备注/Memo:
收稿日期: 2015-10-08; 修回日期: 2016-01-15.
作者简介: 邱长林(1973—), 男, 博士, 副教授, qiu_cl@tju.edu.cn.
通讯作者: 王菁, april6520@sina.com.
基金项目: 国家优秀青年科学基金资助项目(51322904).
Supported by the National Science Fund for Outstanding Youth of China(No. 51322904).
更新日期/Last Update: 2017-04-10