|本期目录/Table of Contents|

[1]毕继红,关健,王剑,等.风雨激振时拉索响应、升力及水膜形态研究[J].天津大学学报(自然科学版),2017,(04):351-357.[doi:10.11784/tdxbz201506104]
 Bi Jihong,Guan Jian,Wang Jian,et al.Cable Response,Lift and Water Film Morphology Under Rain-Wind Induced Vibration[J].Journal of Tianjin University,2017,(04):351-357.[doi:10.11784/tdxbz201506104]
点击复制

风雨激振时拉索响应、升力及水膜形态研究()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年04
页码:
351-357
栏目:
建筑工程
出版日期:
2017-04-30

文章信息/Info

Title:
Cable Response,Lift and Water Film Morphology Under Rain-Wind Induced Vibration
作者:
毕继红12 关健1 王剑3 武骥1
1. 天津大学建筑工程学院,天津 300072;2. 滨海土木工程结构与安全教育部重点实验室(天津大学),天津 300072;3. 天津城建大学天津市土木建筑结构防护与加固重点实验室,天津 300384
Author(s):
Bi Jihong12 Guan Jian1 Wang Jian3 Wu Ji1
1.School of Civil Engineering, Tianjin University, Tianjin 300072, China
2.Key Laboratory of Coast Civil Structure Safety (Tianjin University), Ministry of Education, Tianjin 300072, China
3.Key Laboratory of Soft Soil Characteristic and Engineering Environment of Tianjin, Tianjin Chengjian University, Tianjin 300384, China
关键词:
风雨激振 斜拉索 水膜 共振 有限单元法 有限差分法
Keywords:
rain-wind induced vibration stay cable water film resonance finite element method finite difference method
分类号:
TK448.21
DOI:
10.11784/tdxbz201506104
文献标志码:
A
摘要:
风雨激振涉及到气、液、固3种相态的相互耦合作用, 在数值模拟方面存在困难.在水膜形态与拉索振动双向耦合方程的基础上, 应用有限差分法求解; 在保证精度的前提下, 提高增量步长, 大幅减少计算时间; 应用有限元软件COMSOL求解随时间变化的风压力系数和风摩擦力系数; 分别研究了特定风速下的拉索振动响应、拉索升力以及水膜形态变化, 并分析了三者之间的关系, 以揭示风雨激振的产生机理.获得了基于双向耦合方程的拉索振动持续140 s的数值模拟结果.结果表明:拉索表面水膜形态的周期性变化导致拉索升力的周期性变化, 从而引起拉索的大幅度振动; 水线与拉索间的共振是产生风雨激振现象的主要原因.
Abstract:
Rain-wind induced vibration(RWIV)involves the interaction of three kinds of phase,which are gas,liquid and solid,so it is difficult to be simulated numerically. Based on the two-way coupling equations of water film evolution and cable vibration,this paper proposed the finite difference method for solving the coupled equations. The computational time step was substantially increased by this method,thus the computation time was greatly reduced,while the computation accuracy was ensured. The transient wind pressure and friction coefficients were obtained by using the professional finite element analysis software COMSOL multiphysics. The calculation results of rivulets,aerodynamic lift and vibration of cable were obtained at the special wind speed. The relationships among them were analyzed to reveal the mechanism of RWIV,and the numerical results of 140 s based on the two-way coupled equations were obtained. The results demonstrate that the cyclical changes of water film morphology on the cable surface lead to the cyclical changes of cable lift,which is the reason why the cable vibrates with large amplitude under the special conditions of wind and rain. This confirms the conclusion that the main reason for RWIV is the resonance between rivulets and a cable.

参考文献/References:

[1] Hikami Y, Shiraishi N. Rain-wind-induced vibrations of cables in cable stayed bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 29(1/2):409-418.
[2] Lemaitre C, Alam M, Hémon P, et al. Rainwater rivulets on a cable subject to wind [J]. Comptes Rendus Mécanique, 2006, 334(3):158-163.
[3] 许林汕, 赵林, 葛耀君. 发生风雨激振拉索表面水膜形态数值分析和实测初探[J]. 空气动力学学报, 2011, 29(1):91-96.
Xu Linshan, Zhao Lin, Ge Yaojun. Numerical analysis and real-time measurement of water-film on rain-wind induced vibration cable [J]. Acta Aerodynamica Sinica, 2011, 29(1):91-96(in Chinese).
[4] Taylor I J, Robertson A C. Numerical simulation of the airflow-rivulet interaction associated with the rain-wind induced vibration phenomenon [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(9):931-944.
[5] 毕继红, 王剑, 逯鹏, 等. 斜拉索表面水膜形态及斜拉索气动力变化规律[J]. 天津大学学报:自然科学与工程技术版, 2014, 47(6):480-489.
Bi Jihong, Wang Jian, Lu Peng, et al. Variation of water film morphology and aerodynamic force of stay cable [J]. Journal of Tianjin University:Science and Technology, 2014, 47(6):480-489(in Chinese).
[6] Bi J H, Wang J, Shao Q, et al. 2D numerical analysis on evolution of water film and cable vibration response subject to wind and rain [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 121(1):49-59.
[7] 毕继红, 王剑, 逯鹏, 等. 不同风速下拉索表面水线的形成[J]. 天津大学学报:自然科学与工程技术版, 2014, 47(7):577-582.
Bi Jihong, Wang Jian, Lu Peng, et al. Formation of rivulets on cable surface under different wind speeds [J]. Journal of Tianjin University:Science and Technology, 2014, 47(7):577-582(in Chinese).
[8] 毕继红, 王剑, 邵倩, 等. 风雨激振时水膜形态与拉索振动间的双向耦合[J]. 工程力学, 2014, 31(7):54-60.
Bi Jihong, Wang Jian, Shao Qian, et al. Two-way coupling between water film morphology and rain-wind induced vibration of cable [J]. Engineering Mechanics, 2014, 31(7):54-60(in Chinese).
[9] Li F C, Chen W L, Li H, et al. An ultrasonic transmission thickness measurement system for study of water rivulets characteristics of stay cables suffering from wind-rain-induced vibration [J]. Sensors and Actuators A:Physical, 2010, 159(1):12-23.
[10] Li H, Chen W L, Xu F. A numerical and experimental hybrid approach for the investigation of aerodynamic forces on stay cables suffering from rain-wind induced vibration [J]. Journal of Fluids and Structures, 2010, 26(7/8):1195-1215.
[11] 杜晓庆, 顾明, 全涌. 斜拉桥拉索风雨激振控制的试验研究[J]. 同济大学学报:自然科学版, 2003, 31(11):1266-1269.
Du Xiaoqing, Gu Ming, Quan Yong. Testing study on controlling rain wind induced vibration of cables of cable stayed bridges [J]. Journal of Tongji University:Science and Technology, 2003, 31(11):1266-1269(in Chinese).
[12] Norberg C. Fluctuating lift on a circular cylinder:Review and new measurements [J]. Journal of Fluids and Structures, 2003, 17(1):57-96.
[13] 邵奇. 斜拉索气动力及流场特性研究[D]. 石家庄:石家庄铁道大学土木工程学院, 2015.
Shao Qi. Study on Aerodynamic Force and Flow Field Characteristics of Stay-Cables[D]. Shijiazhuang:School of Civil Engineering, Shijiazhuang Tiedao University, 2015(in Chinese).
[14] 陈文礼, 李惠. 斜拉索风雨振—实验与数值模拟混合子结构方法[J]. 哈尔滨工业大学学报, 2011, 43(8):6-10.
Chen Wenli, Li Hui. Hybrid approach combining experiment and CFD numerical simulation for rain-wind-induced vibration of a stay cable [J]. Journal of Harbin Institute of Technology, 2011, 43(8):6-10(in Chinese).
[15] Jing Haiquan, Xia Yong, Li Hui, et al. Study on the role of rivulet in rain-wind-induced cable vibration through wind tunnel testing[J]. Journal of Fluids & Structures, 2015, 59(10):316-327.
[16] 项海帆. 现代桥梁抗风理论与实践[M]. 北京:人民交通出版社, 2005.
Xiang Haifan. Modern Theory and Practice on Bridge Wind Resistance[M]. Beijing:China Communications Press, 2005(in Chinese).

相似文献/References:

[1]李伟义,张琪昌,何学军. 斜拉索风雨激振面内运动的非线性分析[J].天津大学学报(自然科学版),2010,(02):156.
 LI Wei-yi,ZHANG Qi-chang,HE Xue-jun. Nonlinear Analysis of In-Plane Motion of Rain-Wind-Induced Vibration of Stay Cable[J].Journal of Tianjin University,2010,(04):156.
[2]刘习军,王霞,贾启芬,等.斜拉桥拉索的风雨激励振动特性[J].天津大学学报(自然科学版),2005,(08):674.
[3]毕继红,等. 不同风速下拉索表面水线的形成[J].天津大学学报(自然科学版),2014,(07):577.[doi:10.11784/tdxbz201212055]
 Bi Jihong,Wang Jian,et al. Formation of Rivulets on Cable Surface Under Different Wind Speeds[J].Journal of Tianjin University,2014,(04):577.[doi:10.11784/tdxbz201212055]

备注/Memo

备注/Memo:
收稿日期: 2015-06-30; 修回日期: 2016-06-13.
作者简介: 毕继红(1965—), 女, 博士, 教授.
通讯作者: 毕继红, jihongbi@163.com.
基金项目: 国家自然科学基金资助项目(51408399).
Supported by the National Natural Science Foundation of China(No. 51408399).
更新日期/Last Update: 2017-04-10