|本期目录/Table of Contents|

[1]郑刚,张天奇,张扶正,等.不同埋深下盾构隧道开挖及补偿注浆对地表隆沉变化影响的室内试验[J].天津大学学报(自然科学版),2017,(04):335-344.[doi:10.11784/tdxbz201601083]
 Zheng Gang,Zhang Tianqi,Zhang Fuzheng,et al.Experiment on Effect of Shield Tunneling and Compensation Grouting on Surface Settlement Under Different Cover Depths[J].Journal of Tianjin University,2017,(04):335-344.[doi:10.11784/tdxbz201601083]
点击复制

不同埋深下盾构隧道开挖及补偿注浆对地表隆沉变化影响的室内试验()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年04
页码:
335-344
栏目:
建筑工程
出版日期:
2017-04-30

文章信息/Info

Title:
Experiment on Effect of Shield Tunneling and Compensation Grouting on Surface Settlement Under Different Cover Depths
作者:
郑刚12 张天奇12 张扶正12 查万理12 程雪松12
1. 天津大学建筑工程学院,天津 300072;2. 滨海土木工程结构与安全教育部重点实验室(天津大学),天津 300072
Author(s):
Zheng Gang12 Zhang Tianqi12 Zhang Fuzheng12 Zha Wanli12 Cheng Xuesong12
1.School of Civil Engineering, Tianjin University, Tianjin 300072, China
2.Key Laboratory of Coast Civil Structure Safety (Tianjin University), Ministry of Education, Tianjin 300072, China
关键词:
模型试验 砂土 盾构隧道 补偿注浆 埋深 地表沉降 抬升
Keywords:
model test sand shield tunnel compensation grouting cover depth surface settlement upheaval
分类号:
U45
DOI:
10.11784/tdxbz201601083
文献标志码:
A
摘要:
采用二维隧道模型试验, 探究砂土中不同埋深下盾构隧道开挖及补偿注浆对地表沉降变化的影响规律. 试验表明, 对于不同埋深的工况, 盾构隧道开挖引起的地表沉降均可以用Peck公式有效预测, 埋深C/D对地表沉降槽形状具有显著影响, 且沉降最大值与土体损失率基本呈线性关系. 正常体积范围补偿注浆时, 随着埋深增加, 地表最大抬升值不断减小, 地表抬升范围逐渐增加. 当补偿注浆体积达到某一值后, 不同埋深工况地表最大抬升值与土体补偿率基本均呈线性关系.超体积补偿注浆时, 超体积补偿注浆引起的地表最大抬升值与土体补偿率继续保持线性关系.随着土体补偿率的提升, 不同埋深导致的地表抬升范围差异逐渐减小.
Abstract:
Two-dimensional model tests were performed in sand to investigate the influence of shield tunneling and compensation grouting on surface settlement. The test results indicated that surface settlement caused by tunneling under different cover depths can be effectively predicted by Peck formula. The shape of settlement trough was found to be dependent on the cover-to-diameter ratio C/D,and the maximum settlement was approximately proportional to volume loss. When take compensation grouting in normal volume range, the maximum upheaval and upheaved scope of the ground surface were found to decrease and increase with cover depth, respectively. When the compensation grouting volume reached a certain value, the maximum surface upheaval under different cover depths showed a roughly linear relationship with the compensation grouting volume. While take compensation grouting in additional volume range, the maximum surface upheaval kept the linear relationship with the compensation grouting volume. Nevertheless,the difference of upheaved scope caused by different cover depths gradually vanished with the increase of compensation grouting volume.

参考文献/References:

[1] 魏纲, 魏新江, 龚慈, 等. 软土中盾构法隧道引起的土体移动计算研究[J]. 岩土力学, 2006, 27(6):995-999.
Wei Gang, Wei Xinjiang, Gong Ci, et al. Study on calculation for shield tunneling-induced ground movements in clays [J]. Rock and Soil Mechanics, 2006, 27(6):995-999(in Chinese).
[2] Peck R B. Deep excavations and tunneling in soft ground [C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, Mexico, 1969:225-290.
[3] Lee K M, Rowe R K, Lo K Y. Subsidence owing to tunneling. I:Estimating the gap parameter [J]. Canadian Geotechnical Journal, 1992, 29(6):929-940.
[4] O’Reilly M P, New B M. Settlements above tunnels in the United Kingdom——Their magnitude and prediction [C]// Proceedings of the 3rd International Symposium. Brighton, UK, 1982:173-181.
[5] 王振信. 盾构施工对环境的影响[J]. 地下工程与隧道, 2008(4):1-4.
Wang Zhenxin. Effects of tunneling on environments [J]. Underground Engineering and Tunnels, 2008(4):1-4(in Chinese).
[6] Knothe S. Observations of surface movements under influence of mining and their theoretical interpretation [C]// Proceedings of European Congress on Ground Movement. Leeds, UK, 1957:210-218.
[7] Attwell P B, Farmer I W. Ground deformations resulting from shield tunnelling in London clay [J]. Canadian Geotechnical Journal, 1974, 11(3):380-395.
[8] 廖红建, 卿伟宸, 张志刚, 等. 黄土地层盾构隧道开挖对地表沉降影响的有限元分析[J]. 西安交通大学学报, 2006, 40(11):1343-1347.
Liao Hongjian, Qing Weichen, Zhang Zhigang, et al. Finite element analysis for influence of shield tunneling on settlement of ground surface in loess strata [J]. Journal of Xi’an Jiaotong University, 2006, 40(11):1343-1347(in Chinese).
[9] 魏纲. 盾构法隧道统一土体移动模型的建立[J]. 岩土工程学报, 2007, 29(4):554-559.
Wei Gang. Establishment of uniform ground movement model for shield tunnels [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4):554-559(in Chinese).
[10] Mair R J, Gunn M J, O’Reilly M P. Ground movement around shallow tunnels in soft clay [C]// Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, Sweden, 1981:323-328
[11] Lee K M, Ji H W, Shen C K, et al. Ground response to the construction of shanghai metro tunnel-line 2 [J]. Soils and Foundations, 1999, 39(3):113-134.
[12] 李志明, 廖少明, 戴志仁. 盾构同步注浆填充机制及压力分布研究[J]. 岩土工程学报, 2010, 32(11):1752-1757.
Li Zhiming, Liao Shaoming, Dai Zhiren. Theoretical study on synchronous grouting filling patterns and pressure distribution of EPB shield tunnels [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11):1752-1757(in Chinese).
[13] 苟长飞, 叶飞, 张金龙, 等. 盾构隧道同步注浆充填压力环向分布模型[J]. 岩土工程学报, 2013, 35(3):590-597.
Gou Changfei, Ye fei, Zhang Jinlong, et al. Ring distribution model of filling pressure for shield tunnels under synchronous grouting [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3):590-597(in Chinese).
[14] 叶飞, 苟长飞, 陈治, 等. 盾构隧道粘度时变性浆液壁后注浆渗透扩散模型[J]. 中国公路学报, 2013, 26(1):127-134.
Ye Fei, Gou Changfei, Chen Zhi, et al. Back-filled grouts diffusion model of shield tunnel considering its viscosity degeneration [J]. China Journal of Highway and Transport, 2013, 26(1):127-134(in Chinese).
[15] 袁小会, 韩月旺, 钟小春. 盾尾注浆硬性浆液固结变形数值计算模型构建[J]. 岩土力学, 2012, 33(3):925-932.
Yuan Xiaohui, Han Yuewang, Zhong Xiaochun. Numerical model building for consolidation deformation of cemented mortar for shield tail grouting [J]. Rock and Soil Mechanics, 2012, 33(3):925-932(in Chinese).
[16] 叶飞, 毛家骅, 纪明, 等. 盾构隧道壁后注浆研究现状及发展趋势[J]. 隧道建设, 2015, 35(8):739-752.
Ye Fei, Mao Jiaye, Ji Ming, et al. Research status and development trend of back-filled grouting of shield tunnels[J]. Tunnel Construction, 2015, 35(8):739-752(in Chinese).
[17] Zheng G, Lu P, Diao Y. Advance speed-based parametric study of greenfield deformation induced by EPBM tunneling in soft ground[J]. Computers and Geotech-nics, 2015, 65:220-232.
[18] 万战胜, 朱岱云, 夏永旭. 盾构隧道壁后注浆对地表沉降影响数值模拟研究[J]. 河北工业大学学报, 2011, 40(1):110-113.
Wan Zhansheng, Zhu Daiyun, Xia Yongxu. Numerical simulation study of settlement on shield tunnel after grouting of wall formation[J]. Journal of Hebei University of Technology, 2011, 40(1):110-113(in Chinese).
[19] 孙闯, 张建俊, 刘家顺, 等. 盾构隧道壁后注浆压力对地表沉降的影响分析[J]. 长江科学院院报, 2012, 29(11):68-71.
Sun Chuang, Zhang Jianjun, Liu Jiashun, et al. Effect of shield tunnel backfill grouting pressure on the ground surface subsidence [J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(11):68-71(in Chinese).
[20] 郑刚, 张扶正, 张天奇, 等. 盾构隧道开挖及补偿注浆对地层扰动影响的室内试验及数值模拟研究[J]. 岩土工程学报, 2016, 38(10):1741-1753.
Zheng Gang, Zhang Fuzheng, Zhang Tianqi, et al. Disturbance of shield tunnel excavation and compensation grouting to surrounding soil:Laboratory tests and numerical simulations [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10):1741-1753(in Chinese).
[21] Altaee A, Fenllenius B H. Physical modeling in sand [J]. Canadian Geotechnical Journal, 1994, 31:420-431.
[22] Shahin H M, Nakai T F, Zhang M, et al. Behavior of ground and response of existing foundation due to tunneling[J]. Soils and Foundations, 2011, 51(3):395-405.
[23] 魏纲. 盾构法隧道地面沉降槽宽度系数取值的研究[J]. 工业建筑, 2009, 39(12):74-79.
Wei Gang. Study on calculation for width parameter of surface settlement trough induced by shield tunnel [J]. Industrial Construction, 2009, 39(12):74-79(in Chinese).
[24] Atkinson J H, Potts D M. Subsidence above shallow tunnels in soft ground [J]. Journal of Geotechnical Engineering, ASCE, 1977, 103(4):307-325.
[25] Attewell P B. Engineering contract, site investigation and surface movements in tunneling works [J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 1983, 20(5):5-12.
[26] Marshall A M, Farrell R, Klar A, et al. Tunnels in sands:The effect of size, depth and volume loss on green?eld displacements[J]. Geotechnique, 2012, 62(5):385-399.

相似文献/References:

[1]许 栋,白玉川,谭 艳.正弦派生曲线弯道中水沙运动特性动床试验[J].天津大学学报(自然科学版),2010,(09):762.
 XU Dong,BAI Yu-chuan,TAN Yan.Experiment on Characteristics of Flow and Sediment Movement in Sine-Generated Meandering Channels with Movable Bed[J].Journal of Tianjin University,2010,(04):762.
[2]孙宝善,焦秀稳,郭振邦.艉轴密封保护装置实验研究及其对船舶快速性的影响[J].天津大学学报(自然科学版),2000,(05):624.
[3]刘 昉,练继建,辜晋德. 噪声对水跃区脉动压力的影响及处理方法[J].天津大学学报(自然科学版),2009,(07):649.
 LIU Fang,LIAN Ji-jian,GU Jin-de. Noise Effect and Reduction Method of Pressure Fluctuation in Hydraulic Jump[J].Journal of Tianjin University,2009,(04):649.
[4]黄焱,史庆增,宋安.冰激柔性直立四桩柱结构振动的模型试验[J].天津大学学报(自然科学版),2009,(05):388.
 HUANG Yan,SHI Qing-zeng,SONG An.Model Test of Ice-Induced Vibration on Compliant Vertical Four-Pile Structure[J].Journal of Tianjin University,2009,(04):388.
[5]何勇,伍鹤皋,李杰,等.瀑布沟水电站充水保压蜗壳结构模型试验[J].天津大学学报(自然科学版),2009,(05):400.
 HE Yong,WU He-gao,LI Jie,et al.Test of Surrounding Concrete of Steel Spiral Case Keeping Constant Internal Water Pressure in Pubugou Hydropower Station[J].Journal of Tianjin University,2009,(04):400.
[6]宋慧芳,高学平,张 磊.大型水电站分层取水叠梁门的脉动压力特性[J].天津大学学报(自然科学版),2011,(01):57.
 SONG Hui-fang,GAO Xue-ping,ZHANG Lei.Fluctuating Pressures Characteristics of Stoplogs Gate of Multi-Level Intake for Large Hydroelectric Station[J].Journal of Tianjin University,2011,(04):57.
[7]陈志华,史杰,刘锡良.张拉整体四棱柱单元体试验[J].天津大学学报(自然科学版),2005,(06):533.
[8]黄焱,史庆增,宋安.冰激柔性直立桩结构振动的模型试验[J].天津大学学报(自然科学版),2007,(05):530.
[9]宋安,孙金亮,史庆增,等.作用在引航导堤堤头冰力的模型试验研究[J].天津大学学报(自然科学版),2006,(05):537.
[10]丁红岩,刘建辉.筒基平台气浮拖航倾斜角模型试验[J].天津大学学报(自然科学版),2008,(11):1345.

备注/Memo

备注/Memo:
收稿日期: 2016-01-25; 修回日期: 2016-04-28.
作者简介: 郑刚(1967—), 男, 博士, 教授, zhenggang1967@163.com.
通讯作者: 张扶正, tjuzhangfuzheng@qq.com.
更新日期/Last Update: 2017-04-10