|本期目录/Table of Contents|

[1]马永涛,侯振寰,姜启登,等.基于超宽带信号到达时间的室内人员被动式定位算法及仿真[J].天津大学学报(自然科学版),2017,(08):843-849.[doi:10.11784/tdxbz201605053]
 Ma Yongtao,Hou Zhenhuan,Jiang Qideng,et al.Device-Free Indoor Person Localization Algorithm and Simulation Based on Time of Arrival for UWB Signal[J].Journal of Tianjin University,2017,(08):843-849.[doi:10.11784/tdxbz201605053]
点击复制

基于超宽带信号到达时间的室内人员被动式定位算法及仿真()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年08
页码:
843-849
栏目:
电气自动化与信息工程
出版日期:
2017-08-31

文章信息/Info

Title:
Device-Free Indoor Person Localization Algorithm and Simulation Based on Time of Arrival for UWB Signal
文章编号:
0493-2137(2017)08-0843-07
作者:
马永涛 侯振寰 姜启登 窦智
天津大学电气自动化与信息工程学院,天津 300072
Author(s):
Ma Yongtao Hou Zhenhuan Jiang Qideng Dou Zhi
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
关键词:
室内人员定位 被动式定位 超宽带网络 到达时间 加权最小二乘算法
Keywords:
indoor person localization device-free localization ultra-wideband network time of arrival weighted least squares algorithm
分类号:
TN911.7
DOI:
10.11784/tdxbz201605053
文献标志码:
A
摘要:
针对超宽带网络中室内人员被动式定位问题, 提出了一种基于超宽带信号到达时间的定位算法, 实现了单目标与双目标定位.讨论了人员存在时特有的多径传输信道, 根据信道模型提出定位算法:首先, 利用无人时接收信号的先验知识, 提取与人有关的接收信号; 其后, 估计人所在信号传输路径的到达时间; 最后, 计算各路接收信号的传输距离, 采用加权最小二乘算法对目标进行位置估计.基于时域一致性绕射理论, 建立室内人员被动式定位仿真场景.仿真结果表明, 所提算法单目标定位结果以90% 的概率低于0.3 m; 双目标的定位结果以78% 的概率低于2 m.
Abstract:
For the problem of indoor device-free person localization in the ultra-wideband network,a novel localization algorithm based on time of arrival was proposed to obtain the location of single target and double targets. The unique multi-path transmission channel with people’s presence was discussed,and the localization algorithm based on that channel model was proposed. First,the received signal related to people was extracted by using a priori knowledge of the received signal when there were no targets in the environment. Second,the time of arrival for the signal transmission path where people were present was estimated. Finally,ranging from various paths of the received signal was calculated,and the weighted least squares algorithm was used for target position estimation. Based on time-domain UTD,a simulation scenario for indoor device-free person localization was established. Simulation results show that 90% of the localization result of single target is lower than 0.3 m,and the root mean square error is 0.7 m; for double targets,78% of the localization result is lower than 2 m,and the root mean square error is 2.1 m.

参考文献/References:

[1] Jiang Q, Ma Y, Liu K, et al. A probabilistic radio map construction scheme for crowdsourcing-based fingerprinting localization[J]. IEEE Sensors Journal, 2016, 16(10):3764-3774.
[2] Alsindi N A, Alavi B, Pahlavan K. Measurement and modeling of ultrawideband TOA-based ranging in indoor multipath environments[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3):1046-1058.
[3] Youssef M, Mah M, Agrawala A. Challenges:Device-free passive localization for wireless environments[C]// Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking. New York, USA, 2007:222-229.
[4] Wang J, Gao Q H, Cheng P, et al. Lightweight robust device-free localization in wireless networks[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10):5681-5689.
[5] Wang J, Chen X J, Fang D Y, et al. Transferring compressive-sensing-based device-free localization across target diversity[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4):2397-2409.
[6] Wang Z, Liu H, Xu S, et al. A diffraction measurement model and particle filter tracking method for RSS-based DFL[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(11):2391-2403.
[7] Guo Y, Huang K D, Jiang N Y, et al. An exponential-rayleigh model for RSS-based device-free localization and tracking[J]. IEEE Transactions on Mobile Computing, 2015, 14(3):484-494.
[8] Wang J, Gao Q, Yu Y, et al. Time and energy efficient TOF-based device-free wireless localization[J]. IEEE Transactions on Industrial Informatics, 2015, 12(1):158-168.
[9] Kilic Y, Wymeersch H, Meijerink A, et al. Device-free person detection and ranging in UWB networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1):43-54.
[10] Venkatesh S, Anderson C R, Rivera N V, et al. Implementation and analysis of respiration-rate estimation using impulse-based UWB[C]// Military Communications Conference. New Jersey, USA, 2005:3314-3320.
[11] Stoica L, Rabbachin A, Oppermann I. A low-complexity noncoherent IR-UWB transceiver architecture with TOA estimation[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(4):1637-1646.
[12] Xu A Y Z, Au E K S, Wong A K S, et al. A novel threshold-based coherent TOA estimation for IR-UWB
systems[J]. IEEE Transactions on Vehicular Technology, 2009, 58(8):4675-4681.
[13] Alavi B, Pahlavan K. Modeling of the distance error for indoor geolocation[C]// Wireless Communications and Networking. New Orleans, USA, 2003:668-672.
[14] de Queiroz A D C, Trintinalia L C. An analysis of human body shadowing models for ray-tracing radio channel characterization[C]//2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference. Porto de Galinhas, Brazil, 2015:1-5.
[15] 王瑶, 邹澎, 王召召. 反向射线跟踪法中垂直尖劈的绕射算法[J]. 微波学报, 2010(增1):671-675.
Wang Yao, Zou Peng, Wang Zhaozhao. The vertical wedge diffraction algorithms of inverse ray-tracing method[J]. Journal of Microwaves, 2010(Supp1 1):671-675(in Chinese).
[16] Yao R, Gao G, Chen Z, et al. UWB multipath channel model based on time-domain UTD technique[C]// IEEE Global Telecommunications Conference. San Francisco, USA, 2003:1205-1210.
[17] Yao R, Zhu W, Chen Z. An efficient time-domain ray model for UWB indoor multipath propagation channel [C]// Vehicular Technology Conference. Orlando, USA, 2003:1293-1297.
[18] 曹京. 基于 TD-UTD 的室内复杂环境 UWB 信号传播特性研究[D]. 南京:南京邮电大学电子科学与工程学院, 2013.
Cao Jing. Study on the Propagation Characteristics of UWB Signal in Indoor Complex Environment Base on TD-UTD[D]. Nanjing:Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, 2013(in Chinese).

备注/Memo

备注/Memo:
收稿日期: 2016-05-11; 修回日期: 2016-10-30.
作者简介: 马永涛(1979—), 男, 博士, 副教授.
通讯作者: 马永涛, mayongtao@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(61401301, 61671318); 天津市应用基础与前沿技术研究资助项目(15JCQNJC41900).
Supported by the National Natural Science Foundation of China(Nos. 61401301 and 61671318)and the Tianjin Research Program of Application Foundation and Advanced Technology(No. 15JCQNJC41900).
更新日期/Last Update: 2017-08-10