|本期目录/Table of Contents|

[1]杨爱萍,魏宝强,张越,等.多方向加权TV和变换域非局部正则化图像去模糊[J].天津大学学报(自然科学版),2017,(08):828-834.[doi:10.11784/tdxbz201606030]
 Yang Aiping,Wei Baoqiang,Zhang Yue,et al.Image Deblurring Based on Multi-Direction Weighted TV and Transform Domain Non-Local Regularization[J].Journal of Tianjin University,2017,(08):828-834.[doi:10.11784/tdxbz201606030]
点击复制

多方向加权TV和变换域非局部正则化图像去模糊()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年08
页码:
828-834
栏目:
电气自动化与信息工程
出版日期:
2017-08-31

文章信息/Info

Title:
Image Deblurring Based on Multi-Direction Weighted TV and Transform Domain Non-Local Regularization
文章编号:
0493-2137(2017)08-0828-07
作者:
杨爱萍 魏宝强 张越 何宇清
天津大学电气自动化与信息工程学院,天津 300072
Author(s):
Yang Aiping Wei Baoqiang Zhang Yue He Yuqing
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
关键词:
图像去模糊 多方向加权TV 变换域非局部正则化 交替方向法
Keywords:
image deblurring multi-direction weighted TV transform domain non-local regularization alternating direction method
分类号:
TP391
DOI:
10.11784/tdxbz201606030
文献标志码:
A
摘要:
针对传统全变差(TV)去模糊对噪声敏感且细节恢复能力有限等缺点, 利用边缘检测对传统TV模型进行改进, 并受空域非局部自相似性正则化思想启发, 将图像的变换域非局部自相似性约束融入去模糊模型, 提出一种基于边缘检测的多方向加权TV和变换域非局部正则化的图像去模糊方法.首先, 运用边缘检测将中心像素邻域内的像素对划分为同侧像素对和异侧像素对, 对不同类型的像素对采用不同的权重, 在去模糊的同时尽可能保持图像边缘等细节特征; 其次, 为充分利用先验信息, 将变换域非局部正则化约束融入到改进的TV模型, 进一步改善图像视觉质量; 最后, 对新模型进行有效求解.实验结果表明, 本文算法在去模糊的同时可更好地保留图像的边缘、纹理等细节特征.
Abstract:
In view of the shortcomings of noise sensitivity and limited recovery ability of traditional total variation (TV) model,an improved TV model is proposed. At the same time, inspired by the idea of spatial non-local self-similarity,the non-local regularization constraints of transform domain is integrated into the above model. So,the new image deblurring method is proposed based on mulit-directional weighted TV and regularization in transform domain. First of all,all pairs of pixels were divided into those which are on the same sides and those which are on opposite sides of an edge based on edge detection,then different weights were defined on different pairs of pixels. This method can deblur an image and preserve the image edge well. Furthermore,in order to use the prior infor-mation of the deblurred image,transform domain self-similarity regularization was introduced to the TV model to better preserve the details and texture. Then a modified alternating direction method was addressed to solve the above model. Experiments show that the proposed algorithm not only improves the visual quality,but also preserves details and texture well.

参考文献/References:

[1] Wen Youwei, Ng M K, Huang Yumei. Efficient total variation minimization methods for color image restoration[J]. IEEE Transactions on Image Processing, 2008, 17(11):2081-2088.
[2] Bras N B, Bioucas-Dias J, Martins R C, et al. An alternating direction algorithm for total variation reconstruction of distributed parameters[J]. IEEE Transactions on Image Processing, 2012, 21(6):3004-3016.
[3] Rodreguez P, Wohlberg B. Performance comparison of iterative reweighting methods for total variation regularization[C]// 2014 IEEE International Conference on Image Processing. Paris, France, 2014:1758-1762.
[4] Wang S, Liu Z W, Dong W S. Total variation based image deblurring with nonlocal self-similarity constraint [J]. Electronics Letters, 2011, 47(16):916-918.
[5] Guo Weihong, Yin Wotao. EdgeCS:Edge guided compressive sensing reconstruction[C]//The International Society for Optical Engineering. Huangshan, China, 2010:7744-7753.
[6] Elvetun O L, Nielsen B F. The split Bregman algorithm applied to PDE-constrained optimization problems with total variation regularization[J]. Computational Optimization and Applications, 2016, 64(3):699-724.
[7] Candes E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted ?1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6):877-905.
[8] Dabov K, Foi A, Katkovnik V, et al. Image denoising
by sparse 3-D transform-domain collaborative filtering [J]. IEEE Transactions on Image Processing, 2007,
16(8):2080-2095.
[9] He Wei, Zhang Hongyan, Zhang Lianpei, et al. Total-variation-regularized low-rank matrix factorization for hyperspectral image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):178-188.
[10] Ye X, Chen Y, Huang F. Computational acceleration for MR image reconstruction in partially parallel imaging [J]. IEEE Transactions on Medical Imaging, 2011, 30(5):1055-1063.
[11] Zhang J, Zhao D, Xiong R, et al. Image restoration using joint statistical modeling in a space-transform domain[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(6):915-928.
[12] Guo W, Qin J, Yin W. A new detail-preserving regularity scheme[J]. SIAM Journal on Imaging Sciences, 2014, 7(2):1309-1334.

备注/Memo

备注/Memo:
收稿日期: 2016-06-15; 修回日期: 2016-08-21.
作者简介: 杨爱萍(1976—), 女, 博士, 副教授.
通讯作者: 杨爱萍, yangaiping@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(61472274).
Supported by the National Natural Science Foundation of China(No.,61472274).
更新日期/Last Update: 2017-08-10