|本期目录/Table of Contents|

[1]毕凤荣,刘建飞,姚昱儒,等.基于Kriging模型的动力总成悬置系统多目标优化[J].天津大学学报(自然科学版),2017,(03):328-334.[doi:10.11784/tdxbz201603053]
 Bi Fengrong,Liu Jianfei,Yao Yuru,et al.Multi-Objective Optimization of Powertrain Mounting System Based on Kriging Model[J].Journal of Tianjin University,2017,(03):328-334.[doi:10.11784/tdxbz201603053]
点击复制

基于Kriging模型的动力总成悬置系统多目标优化()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2017年03
页码:
328-334
栏目:
机械工程
出版日期:
2017-03-23

文章信息/Info

Title:
Multi-Objective Optimization of Powertrain Mounting System Based on Kriging Model
作者:
毕凤荣1 刘建飞1 姚昱儒1 张剑1 景亚兵1 田从丰2
1. 天津大学内燃机燃烧学国家重点实验室,天津 300072;2. 山推工程机械股份有限公司,济宁 272000
Author(s):
Bi Fengrong1 Liu Jianfei1 Yao Yuru1 Zhang Jian1 Jing Yabing1 Tian Congfeng2
1.State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
2.Shantui Construction Machinery Company Limited, Jining 272000, China
关键词:
动力总成悬置系统 Kriging模型 NSGA-II 多目标优化
Keywords:
powertrain mounting system(PMS) Kriging model NSGA-II multi-objective optimization
分类号:
U461.4
DOI:
10.11784/tdxbz201603053
文献标志码:
A
摘要:
针对轮式装载机在怠速NVH性能差的问题, 提出了一种基于Kriging模型的动力总成悬置系统的优化设计方法.建立了包含动力总成系统的整车虚拟样机模型.结合最优拉丁超立方试验设计、Kriging近似模型以及NSGA-II多目标优化方法, 选取悬置的刚度作为设计变量, 以动力总成系统解耦度、驾驶室地板垂向加速度以及底盘动能作为目标函数进行优化, 得到Pareto前端.通过权重系数法求得最优解, 并通过整车模型进行验证.结果表明, 该方法能够快速有效地对悬置系统进行优化, 优化后的悬置系统解耦率得到提升, 同时, 优化后的整车模型在模拟的5个稳态工况下, 驾驶室的振动及底盘动能均有所降低, 驾驶室振动最大降幅为23.6% (怠速), 底盘动能最大降幅为22.0%(2 000 r/min), 整车平顺性得到提升.
Abstract:
Aiming at the problem of poor performance of noise,vibration and harshness(NVH) at idle speed of wheel loader,an optimal design method of powertrain mounting system(PMS) based on Kriging model was proposed. A virtual model of the loader was established including the powertrain mounting system. Taking mounts ’stiffness as design variables,optimal Latin hypercube design,Kriging approximation models and NSGA-II multi-objective optimization were applied to optimize the objectives,including the energy decoupling of the powertrain and the root mean square(RMS)values of floor’s vertical and kinetic energy of chassis. The weight coefficient method was used to get one optimal solution from the Pareto optimal set obtained previously. Furthermore,a virtual model test was conducted by using the optimal solution as verification. The result indicates that the method of Kriging approximation model can optimize PMS quickly and effectively. The energy distribution of optimized PMS is improved. Meanwhile,the vibration of cab and the kinetic energy of chassis both decrease under five simulation conditions,the biggest decline in vibration of cab and kinetic energy of chassis being 23.6% (idling)and 22.0% (2 000 r/min)respectively. The ride comfort of wheel loader model with optimized PMS is greatly improved.

参考文献/References:

[1] Courteille E, Mortier F, Leotoing L, et al. Multi-objective robust design optimization of an engine mounting system[C]// SAE Technical Paper. Detroit, USA, 2005:2005-01-2412.
[2] 童炜, 陈剑斌, 宋晓琳, 等. 基于ADAMS的发动机悬置系统多目标优化[J]. 汽车工程, 2011, 33(11):971-975.
Tong Wei, Chen Jianbin, Song Xiaolin, et al. Multi-objective optimization of engine mounting system based on ADAMS[J]. Automotive Engineering, 2011, 33(11):971-975(in Chinese).
[3] 史文库, 洪哲浩, 赵涛, 等. 汽车动力总成悬置系统多目标优化设计及软件开发[J]. 吉林大学学报:工学版, 2006, 36(5):654-658.
Shi Wenku, Hong Zhehao, Zhao Tao, et al. Automobile multi-objective optimization design of power assembly mounting system and software development[J]. Journal of Jilin University:Engineering and Techology Edition, 2006, 36(5):654-658(in Chinese).
[4] Ali El Hafidi, Bruno Martin, Alexandre Loredo, et al. Vibration reduction on city buses:Determination of optimal position of engine mounts[J]. Mechanical Systems and Signal Processing, 2010, 24(7):2198-2209.
[5] 王楷焱. 商用车驾驶室悬置系统隔振特性与优化研究[D]. 长春:吉林大学汽车工程学院, 2011.
Wang Kaiyan. Study on Vibration Isolation and Optimization of Commercial Vechicle Cab Suspension[D]. Changchun:College of Automotive Engineering, Jilin University, 2011(in Chinese).
[6] 徐石安. 汽车发动机弹性支承隔振的解耦方法[J]. 汽车工程, 1995(4):198-204.
Xu Shi’an. Decoupling method for vibration isolation of automotive engine with elastic support[J]. Automotive Engineering, 1995(4):198-204(in Chinese).
[7] 庄伟超, 王良模, 殷召平, 等. 基于遗传算法的混合动力汽车动力总成悬置系统的优化设计研究[J]. 振动
与冲击, 2015(8):209-213.
Zhuang Weichao, Wang Liangmo, Yin Zhaoping, et al. Optimization design for powertrain mounting system of a hybrid electric vehicle via genetic algorithm[J]. Journal of Vibration and Shock, 2015(8):209-213(in Chinese).
[8] 蒋荣超, 王登峰, 吕文超, 等. 基于Kriging模型的驾驶室悬置系统多目标优化[J]. 农业机械学报, 2015, 46(3):344-350.
Jiang Rongchao, Wang Dengfeng, Lü Wenchao, et al. Multi-objective optimization of cab suspension system based on kriging model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3):344-350(in Chinese).
[9] Simpson T W, Mauery T M, Korte J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39(12):2233-2241.
[10] 隋允康, 宇慧平. 响应面方法的改进及其对工程优化的应用[M]. 北京:科学出版社, 2011.
Sui Yunkang, Yu Huiping. Improvement of Response Surface Method and Its Application to Engineering Optimization[M]. Beijing:Science Press, 2011(in Chinese).
[11] Konka A, Coit D W, Smith A E. Multi-objective optimization using genetic algorithms:A tutorial[J]. Reliability Engnieering and System Safety, 2006, 91:992-1007.
[12] Cui X T, Wang S X, Bi F R, et al. Multi-criterion optimal design of automotive door based on metamodeling technique and genetic algorithm[J]. Transactions of Tianjin University, 2007, 13(3):169-174.
[13] Chen Y, Tang Z, Xu P, et al. Multi-objective optimization of the PMS based on non-dominated sorting genetic algorithm Ⅱ[C]// SAE Technical Paper. Detroit, USA, 2015:2015-01-1675.
[14] 唐建华, 胡培龙. 某越野军车悬置元件设计与试验验证[J]. 汽车科技, 2010(4):19-23.
Tang Jianhua, Hu Peilong. Design and experiment verification of a mount part for a military off-road vehicle [J]. Automotive Science & Technology, 2010(4):19-23(in Chinese).

备注/Memo

备注/Memo:
收稿日期: 2016-03-19; 修回日期: 2016-06-28.
通讯作者: 景亚兵, robin@tju.edu.cn.
基金项目: 国家科技支撑计划资助项目(2015BAF07B04).
Supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China
(No. 2015BAF07B04).
更新日期/Last Update: 2017-03-10