|本期目录/Table of Contents|

[1]王超,王刚,丁红兵.音速喷嘴内水蒸气自发凝结流动自激振荡和分歧现象[J].天津大学学报(自然科学版),2016,(11):1113-1120.[doi:10.11784/tdxbz201604052]
 Wang Chao,Wang Gang,Ding Hongbing.Spontaneous Condensation Steam Flow with Self-Excited Oscillation and Bifurcation Phenomenon in Sonic Nozzles[J].Journal of Tianjin University,2016,(11):1113-1120.[doi:10.11784/tdxbz201604052]
点击复制

音速喷嘴内水蒸气自发凝结流动自激振荡和分歧现象()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2016年11
页码:
1113-1120
栏目:
电气与自动化工程
出版日期:
2016-11-15

文章信息/Info

Title:
Spontaneous Condensation Steam Flow with Self-Excited Oscillation and Bifurcation Phenomenon in Sonic Nozzles
作者:
王超12 王刚12 丁红兵12
1. 天津大学电气与自动化工程学院,天津 300072;2. 天津市过程检测与控制重点实验室,天津 300072
Author(s):
Wang Chao12 Wang Gang12 Ding Hongbing12
1. School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
2. Tianjin Key Laboratory of Process Measurement and Control, Tianjin 300072, China
关键词:
音速喷嘴 自发凝结流动 自激振荡模式 流动分歧 质量流量
Keywords:
sonic nozzles spontaneous condensation of flow self-excited oscillation mode bifurcation of flow mass flow rate
分类号:
TH814
DOI:
10.11784/tdxbz201604052
文献标志码:
A
摘要:
气体在喷嘴中流动伴有很大的温降, 会使其中的水蒸气发生凝结, 并对其计量产生影响.针对音速喷嘴中过热水蒸气自发凝结流动产生的非稳态自激振荡和流动分歧现象, 建立了考虑黏性的水蒸气自发凝结数值模型; 根据凝结诱导的气动激波的振荡幅度将自激振荡分为3种不同的模式, 其中模式Ⅲ的压力波动会波及喉部上方, 且会出现非对称流动分歧现象, 而模式Ⅰ中气动激波仅在平衡位置附近小幅度振荡; 最后研究了自激振荡对喷嘴的质量流量的影响, 并给出了相应的修正系数, 最小值为0.988, 需要加以重视.
Abstract:
The gas temperature will drop greatly when the gas flows through the nozzle,which leads to the condensation of the vapor. To investigate the phenomenon of self-excited oscillation and bifurcation induced by spontaneous condensation of the pure superheated steam flow,a numerical viscous model of supersonic nozzle flow was established. Three self-excited periodic oscillation modes were classified according to the oscillation amplitude of aerodynamic shock. It is found that the pressure fluctuations spread to the upstream of the nozzle throat in mode Ⅲ,while the shock in modeⅠoscillates with small amplitude. Moreover,the effect of self-excited oscillation on the mass flow rate of nozzle was studied in detail. Correction factor for condensation effect was obtained and the minimum value was 0.988,which calls for pay more attention.

参考文献/References:

[1] Ding H B, Wang C, Zhao Y K. Flow characteristics of hydrogen gas through a critical nozzle[J]. International Journal of Hydrogen Energy, 2014, 39(8):3947-3955.
[2] Aschenbrenner A, Narjes L. Untersuchung des feuchteeinflusses auf den durchfluss durch düsen bei überkritischem druckverh?ltnis[J]. PTB Mitteilungen, 1973, 84:381-385.
[3] 李春辉, 王池. 通过音速喷嘴气体流量的湿度修正方法研究[J]. 计量学报, 2007(增1):160-164.
Li Chunhui, Wang Chi. The humidity correction on the flow through sonic nozzle[J]. Acta Metrologica Sinica, 2007(Suppl 1):160-164(in Chinese).
[4] Stewart D G, Watson J T R, Vaidya A M. The effect of using atmospheric air in critical flow nozzles[C]//Proc 4th Int Symp Fluid Flow Meas. Denver, Colorado, USA. 1999.
[5] Lim J M, Yoon B H, Oh Y K, et al. The humidity effect on air flow rates in a critical flow venturi nozzle [J]. Flow Measurement and Instrumentation, 2011, 22(5):402-405.
[6] Chahine K, Ballico M. Evaluation of the effect of relative humidity of air on the coefficients of critical flow venturi nozzles[C]//FLOMEKO. Paris, France, 2013:24-26.
[7] 蔡颐年, 王乃宁. 湿蒸汽两相流[M]. 西安:西安交通大学出版社, 1985.
Cai Yinian, Wang Naining. Two-Phase Wet Steam Flow [M]. Xi’an:Xi’an Jiaotong University Press, 1985(in Chinese).
[8] Wyslouzil B E, Heath C H, Cheung J L, et al. Binary condensation in a supersonic nozzle[J]. The Journal of Chemical Physics, 2000, 113(17):7317-7329.
[9] Pouring A. Thermal choking and condensation in nozzles [J]. Phys Fluids, 1965, 8(10):1802-1810.
[10] Skilling S A. An Analysis of the Condensation Phenomena Occurring in Wet Steam turbine[D]. Birmingham:University of Birmingham, 1987.
[11] Adam S, Schnerr G. Instabilities and bifurcation of non-equilibrium two-phase flows[J]. Journal of Fluid Mechanics, 1997, 348:1-28.
[12] 李亮. 存在自发凝结的湿蒸汽两相非平衡凝结流动数值研究[D]. 西安:西安交通大学能源与动力工程学院, 2002.
Li Liang, Numerical Study on the Nonequilibrium Wet Steam Two-phase Flows with Spontaneous Condensation [D]. Xi’an:School of Energy and Power Engineering, Xi’an Jiaotong University, 2002(in Chinese).
[13] Ma Q F, Hu D P, Jiang J Z, et al. A turbulent Eulerian multi-fluid model for homogeneous nucleation of water vapour in transonic flow[J]. International Journal of Computational Fluid Dynamics, 2009, 23(3):221-231.
[14] Wróblewski W, Dykas S, Gepert A. Steam condensing flow modeling in turbine channels[J]. International Journal of Multiphase Flow, 2009, 35(6):498-506.
[15] Dykas S, Wróblewski W. Numerical modelling of steam condensing flow in low and high-pressure nozzles[J]. International Journal of Heat & Mass Transfer, 2012, 55(21/22):6191-6199.
[16] Simpson D A, White A J. Viscous and unsteady flow calculations of condensing steam in nozzles[J]. International Journal of Heat and Fluid Flow, 2005, 26(1):71-79.
[17] Yu X G, Xie D, Wang C, et al. Numerical investigation of oscillating flows with nonequilibrium condensation in nozzles[J]. Journal of Propulsion & Power, 2015, 31(3):837-842.
[18] 林建忠. 流体力学[M]. 北京:清华大学出版社, 2013.
Lin Jianzhong. Hydromechanics[M]. Beijing:Tsing- hua University Press, 2013(in Chinese).
[19] Delale C F, Lamanna G, van Dongen M E H. On the stability of stationary shock waves in nozzle flows with homogeneous condensation[J]. Physics of Fluids, 2001, 13(9):2706-2719.
[20] Gerber A G, Kermani M J. A pressure based Eulerian-Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow[J]. International Journal of Heat and Mass Transfer, 2004, 47(10):2217-2231.
[21] Wagner W, Cooper J R, Dittmann A, et al. The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(1):150-184.
[22] Moore M J, Walters P T, Crane R I, et al. Predicting the fog-drop size in wet-steam turbines[J]. Institute of Mechanical Engineering, 1974, C37/73:101-109.

备注/Memo

备注/Memo:
收稿日期: 2016-04-20; 修回日期: 2016-07-19.
基金项目: 国家青年科学基金资助项目(51506148); 天津市自然科学基金资助项目(15JCYBJC19200, 16JCQNJC03700).
作者简介: 王超(1973—), 男, 博士, 教授, wangchao@tju.edu.cn.
通讯作者: 丁红兵, hbding@tju.edu.cn.
更新日期/Last Update: 2016-11-10