|本期目录/Table of Contents|

[1]陈东祥,刘 磊,韩鸿志.汽车车身涂膜缺陷的计算机视觉检测方法[J].天津大学学报(自然科学版),2009,(12):1130.
 CHEN Dong-xiang,LIU Lei,HAN Hong-zhi.Detection Method of Car Body Painting Defects Based on Computer Vision Technology[J].Journal of Tianjin University,2009,(12):1130.
点击复制

汽车车身涂膜缺陷的计算机视觉检测方法()
分享到:

《天津大学学报(自然科学版)》[ISSN:0493-2137/CN:12-1127/N]

卷:
期数:
2009年12
页码:
1130
栏目:
机械工程
出版日期:
2009-12-15

文章信息/Info

Title:
Detection Method of Car Body Painting Defects Based on Computer Vision Technology
文章编号:
0493-2137(2009)12-1130-05
作者:
陈东祥刘 磊韩鸿志
天津大学机械工程学院天津市先进制造技术与装备重点实验室,天津 300072
Author(s):
CHEN Dong-xiangLIU LeiHAN Hong-zhi
Tianjin Key Laboratory of Advanced Manufacturing Technology and Equipment,School of Mechanical Engineering, Tianjin University,Tianjin 300072,China
关键词:
涂膜缺陷计算机视觉模糊边缘模式识别
Keywords:
painting defectcomputer visionfuzzy edgepattern recognition
分类号:
TP391
文献标志码:
A
摘要:
将计算机视觉检测技术应用于汽车车身表面涂膜缺陷的检测,根据汽车涂膜及涂膜缺陷的特征,提出了侧向照明方式,获取了特征明显的涂膜缺陷图像.针对汽车涂膜缺陷边缘模糊,传统的微分检测算子无法有效检测的情况,提出了基于图像中心化和图像去背景操作相结合的检测分割算法,算法原理简单,性能稳定,能够有效检测出绝大多数涂膜缺陷的模糊边缘.
Abstract:
In this paper,computer vision technology was applied to detect the car body painting defects. Based on the characteristics of car painting coat and its defects,side direction illumination mode was developed in order to obtain the distinguishable painting defect images. Meanwhile considering that conventional detection operators are not effective to detect fuzzy edges of car painting defections,a defect segmentation algorithm was put forward based on the image centerization and morphological operation. The algorithm performs stably with simple principle,and can effectively detect most of painting defection fuzzy edges.

参考文献/References:

[1] 王锡春. 展望21 实际汽车涂装技术[J]. 材料保护, 2000,33(1):61-63. Wang Xichun. Prospect on painting technology for automobile in 21st century [J]. Journal of Materials Protection,2000,33(1):61-63(in Chinese).
[2] 王锡春. 国内汽车涂装发展动态[J]. 现代涂料与涂装,1995(1):26-28,25. Wang Xichun. Development trend of domestic automotive painting technology [J]. Modern Paint and Finishing,1995(1):26-28,25(in Chinese).
[3] 王锡春. 汽车涂装工艺技术[M]. 北京:化学工业出版社,2005:154-181. Wang Xichun. Automobile Coating Technology [M]. Beijing :Chemical Industry Press ,2005 :154-181(in Chinese).
[4] 吴 涛. 汽车车身涂装技术的发展动态[J]. 汽车工艺与材料,2007(2):1-3. Wu Tao. Development trend of automotive body painting technology [J]. Automobile Technology and Material, 2007(2):1-3(in Chinese).
[5] 梁德群,甄为忠,贺朋令. 基于图像识别的工业检测技术[J]. 光子学报,1993,22(3):1-5. Liang Dequn,Zhen Weizhong,He Pengling. Industrial detection technology based on image recognition theory [J]. Acta Photonica Sinica ,1993 ,22(3) :1-5(in Chinese).
[6] 孙根云,柳钦火,刘 强,等. 图像的模糊边缘检测算法 [J]. 光电工程,2007,34(7):141-144. Sun Genyun,Liu Qinhuo,Liu Qiang,et al. A new algorithm for fuzzy edge detection [J]. Opto-Electronic Engineering,2007,34(7):141-144(in Chinese).
[7] 罗平辉,冯 平,哈力旦 A,等. MATLAB 7. 0 在图像处理中的应用[M]. 北京:机械工业出版社,2005. Luo Pinghui,Feng Ping Halidan A,Application of MATLAB 7.0 in Image Processing[M]. Beijing:China Machine Press,2005(in Chinese).
[8] Li Qingzhong,Wang Maohua,Gu Weikang. Computer vision based system for apple surface defect detection[J].Computer and Electronics in Agriculture, 2002,36(2/3):215-223.

相似文献/References:

[1]肖松山,范世福,李彦芳,等.计算机辅助精子运动分析系统的研究[J].天津大学学报(自然科学版),2000,(06):811.
[2]张健新,段发阶,叶声华.一种快速高精度立体视觉光条匹配算法[J].天津大学学报(自然科学版),1998,(02):187.

备注/Memo

备注/Memo:
收稿日期:2008-10-09;修回日期:2009-08-20.
作者简介:陈东祥(1952— ),男,教授.
通讯作者:陈东祥,dxchen@tju.edu.cn.
更新日期/Last Update: